CS473-Algorithms I

Lecture 9
 Sorting in Linear Time

View in slide-show mode

How Fast Can We Sort?

- The algorithms we have seen so far:
- Based on comparison of elements
- We only care about the relative ordering between the elements (not the actual values)
\square The smallest worst-case runtime we have seen so far: O (nlgn)
\square Is O(nlgn) the best we can do?
- Comparison sorts: Only use comparisons to determine the relative order of elements.

Decision Trees for Comparison Sorts

- Represent a sorting algorithm abstractly in terms of a decision tree
- A binary tree that represents the comparisons between elements in the sorting algorithm
\square Control, data movement, and other aspects are ignored
- One decision tree corresponds to one sorting algorithm and one value of n (input size)

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $\mathrm{j} \leftarrow 2$ to n do
2. $\mathrm{key} \leftarrow \mathrm{A}[\mathrm{j}]$;
3. $\mathrm{i} \leftarrow \mathrm{j}-1$;
4. while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key
do
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
6. $\quad i \leftarrow i-1$;
endwhile
7. $\mathrm{A}[\mathrm{i}+1] \leftarrow$ key;
endfor

Loop invariant:
The subarray $\mathrm{A}[1 . . \mathrm{j}-1]$
is always sorted

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $\mathrm{j} \leftarrow 2$ to n do
2. $\mathrm{key} \leftarrow \mathrm{A}[\mathrm{j}]$;
3. $\mathrm{i} \leftarrow \mathrm{j}-1$;
4. while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key do
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
6. $\quad \mathrm{i} \leftarrow \mathrm{i}-1$;
endwhile
7. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{key}$;

Shift right the entries in A[1..j-1] that are > key
endfor

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $\mathrm{j} \leftarrow 2$ to n do
2. $\mathrm{key} \leftarrow \mathrm{A}[\mathrm{j}]$;
3. $\quad i \leftarrow j-1$;
4. while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key
do
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
6. $\quad \mathrm{i} \leftarrow \mathrm{i}-1$;

endwhile

7. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{key}$;
endfor
Insert key to the correct locatio
End of iter j : $A[1 . . j]$ is sorted

Different Outcomes for Insertion Sort and $n=3$ Input: $<\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}>$

Decision Tree for Insertion Sort and $n=3$

Decision Tree Model for Comparison Sorts

- Internal node (i.j): Comparison between elements a_{i} and a_{j}
- Leaf node: An output of the sorting algorithm
- Path from root to a leaf: The execution of the sorting algorithm for a given input
- All possible executions are captured by the decision tree
- All possible outcomes (permutations) are in the leaf nodes

Decision Tree for Insertion Sort and $\mathrm{n}=3$

Input: <9, 4, 6>

Decision Tree Model

- A decision tree can model the execution of any comparison sort:
\square One tree for each input size n
\square View the algorithm as splitting whenever it compares two elements
\square The tree contains the comparisons along all possible instruction traces

The running time of the algorithm $=$ the length of the path taken
Worst case running time $=$ height of the tree

Lower Bound for Comparison Sorts

Let n be the number of elements in the input array.

- What is the min number of leaves in the decision tree?
n ! (because there are n ! permutations of the input array, and all possible outputs must be captured in the leaves)
- What is the max number of leaves in a binary tree of height h?
$2^{\text {h }}$
- So, we must have:

$$
2^{\mathrm{h}} \geq \mathrm{n}!
$$

Lower Bound for Decision Tree Sorting

Theorem: Any comparison sort algorithm requires

 $\Omega(\mathrm{nlgn})$ comparisons in the worst case.Proof: We'll prove that any decision tree corresponding to a comparison sort algorithm must have height Ω (nlgn)

$$
\begin{aligned}
2^{\mathrm{h}} & \geq \mathrm{n}!\quad(\text { from previous slide }) \\
\mathrm{h} & \geq \lg (\mathrm{n}!) \\
& \geq \lg \left((\mathrm{n} / \mathrm{e})^{\mathrm{n}}\right) \quad(\text { Stirling's approximation }) \\
& =\mathrm{nlgn}-\mathrm{n} \operatorname{lge} \\
& =\Omega(\mathrm{nlgn})
\end{aligned}
$$

Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof: The O(nlgn) upper bounds on the runtimes for heapsort and merge sort match the Ω (nlgn) worst-case lower bound from the previous theorem.

Sorting in Linear Time

Counting sort: No comparisons between elements

Input: $\mathrm{A}[1 . . \mathrm{n}]$, where $\mathrm{A}[\mathrm{j}] \in\{1,2, \ldots, \mathrm{k}\}$
Output: B[1 .. n], sorted
Auxiliary storage: $\mathrm{C}[1 . . \mathrm{k}]$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& \text { // C[i] = |\{key = i\}| } \\
& \text { for } \mathrm{i} \leftarrow 2 \text { to } \mathrm{k} \text { do } \\
& \mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1] \\
& / / C[i]=|\{k e y \leq i\}| \\
& \text { for } \mathrm{j} \leftarrow \mathrm{n} \text { downto } 1 \text { do } \\
& \mathrm{B}[\mathrm{C}[\mathrm{~A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}] \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]-1
\end{aligned}
$$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

Step 1: Initialize all counts to 0

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$

for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do $\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

Step 2: Count the number of occurrences

 of each value in the input array
for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / \mathrm{C}[\mathrm{i}]=|\{\mathrm{key} \leq \mathrm{i}\}|$

B:

for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

Step 3: Compute the number of elements less than or equal to each value

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=|\{\mathrm{key}=\mathrm{i}\}|
\end{aligned}
$$

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[3]=3$ elts that are ≤ 3

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=|\{\mathrm{key}=\mathrm{i}\}|
\end{aligned}
$$

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array
There are $C[4]=5$ elts that are ≤ 4

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[3]=2$ elts that are ≤ 3

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=|\{\mathrm{key}=\mathrm{i}\}|
\end{aligned}
$$

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[1]=1$ elts that are ≤ 1

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=|\{k e y \leq i\}|$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[4]=4$ elts that are ≤ 4

Counting Sort: Runtime Analysis

Counting Sort: Runtime

Runtime is $\Theta(\mathrm{n}+\mathrm{k})$

- If $k=O(n)$, then counting sort takes $\Theta(n)$
- Question: We proved a lower bound of Θ (nlgn) before! Where is the fallacy?
- Answer:
$\square \Theta(\mathrm{nlgn})$ lower bound is for comparison-based sorting
\square Counting sort is not a comparison sort
\square In fact, not a single comparison between elements occurs!

Stable Sorting

Counting sort is a stable sort: It preserves the input order among equal elements.
\square i.e. The numbers with the same value appear in the output array in the same order as they do in the input array.

Exercise: Which other sorting algorithms have this property?

Radix Sort

- Origin: Herman Hollerith's card-sorting machine for the 1890 US Census.
- Basic idea: Digit-by-digit sorting
- Two variations:
- Sort from MSD to LSD (bad idea)
- Sort from LSD to MSD (good idea)
- LSD/MSD: Least/most significant digit

Herman Hollerith (1860-1929)

- The 1880 U.S. Census took almost 10 years to process.
- While a lecturer at MIT, Hollerith prototyped punched-card technology.
- His machines, including a "card sorter," allowed the 1890 census total to be reported in 6 weeks.

- He founded the Tabulating Machine Company in 1911, which merged with other companies in 1924 to form International Business Machines (IBM).

Hollerith Punched Card

- 12 rows and 24 columns \square coded for age, state of residency, gender, etc.

Punched card: A piece of stiff paper that contains digital information represented by the presence or absence of holes.

"Modern" IBM card

One character per column

```
01234567S9月BCDEFGHIJKLHNOFQRSTUUMXYZ INTRODUCTON TO ALGORITHNS 09/24/2001
```



```
    ! !! lun!!!!
```

```
    ! !! lun!!!!
```



```
22|22222222|22222222|2222222|22222222222222222222222222222222|2222|22|2222222222
```

```
22|22222222|22222222|2222222|22222222222222222222222222222222|2222|22|2222222222
```



```
999999999|99999999|99999999|9999999|9|99|999999999999999||999999|999999999999999
```

```
999999999|99999999|99999999|9999999|9|99|999999999999999||999999|999999999999999
```

So, that's why text windows have 80 columns!

Hollerith Tabulating Machine and Sorter

- Mechanically sorts the cards based on the hole locations.
- Sorting performed for one column at a time
- Human operator needed to load/retrieve/move cards at each stage

Hollerith's MSD-First Radix Sort

- Sort starting from the most significant digit (MSD)
- Then, sort each of the resulting bins recursively
- At the end, combine the decks in order

Hollerith's MSD-First Radix Sort

- To sort a subset of cards recursively:
- All the other cards need to be removed from the machine, because the machine can handle only one sorting problem at a time.
- The human operator needs to keep track of the intermediate card piles

329	to sort these two cards	$\begin{array}{lll} 3 & 29 \\ 3 & 5 & 5 \end{array}$
355	recursively, remove all	
457	the other cards from	
436	\|	
657	intermediate pile	
720	$457,436,657,720,839$	
839	457, 436, 657, 720, 839	

Hollerith's MSD-First Radix Sort

- MSD-first sorting may require:
-- very large number of sorting passes
-- very large number of intermediate card piles to maintain
- S(d): \# of passes needed to sort d-digit numbers (worst-case)
- Recurrence:

$$
S(d)=10 S(d-1)+1 \quad \text { with } S(1)=1
$$

Reminder: Recursive call made to each subset with the same most significant digit (MSD)

Hollerith's MSD-First Radix Sort Recurrence: $\mathrm{S}(\mathrm{d})=10 \mathrm{~S}(\mathrm{~d}-1)+1$

$$
\begin{aligned}
\mathrm{S}(\mathrm{~d}) & =10 \mathrm{~S}(\mathrm{~d}-1)+1 \\
& =10(10 \mathrm{~S}(\mathrm{~d}-2)+1)+1 \\
& =10(10(10 \mathrm{~S}(\mathrm{~d}-3)+1)+1)+1 \\
& =10^{\mathrm{i}} \mathrm{~S}(\mathrm{~d}-\mathrm{i})+10^{\mathrm{i}-1}+10^{\mathrm{i}-2}+\ldots+10^{1}+10^{0}
\end{aligned}
$$

Iteration terminates when $\mathrm{i}=\mathrm{d}-1$ with $\mathrm{S}(\mathrm{d}-(\mathrm{d}-1))=\mathrm{S}(1)=1$

$$
S(d)=\sum_{i=0}^{d-1} 10^{i}=\frac{10^{d}-1}{10-1}=\frac{1}{9}\left(10^{d}-1\right) \longmapsto S(d)=\frac{1}{9}\left(10^{d}-1\right)
$$

Hollerith's MSD-First Radix Sort

P(d): \# of intermediate card piles maintained (worst-case)
Reminder: Each routing pass generates 9 intermediate piles except the sorting passes on least significant digits (LSDs)

There are $10^{\mathrm{d}-1}$ sorting calls to LSDs

$$
\begin{aligned}
\mathrm{P}(\mathrm{~d}) & =9\left(\mathrm{~S}(\mathrm{~d})-10^{\mathrm{d}-1}\right)=9\left(\left(10^{\mathrm{d}}-1\right) / 9-10^{\mathrm{d}-1}\right) \\
& =\left(10^{\mathrm{d}}-1-9 \cdot 10^{\mathrm{d}-1}\right)=10^{\mathrm{d}-1}-1 \\
\mathrm{P}(\mathrm{~d}) & =10^{\mathrm{d}-1}-1
\end{aligned}
$$

Alternative solution: Solve the recurrence:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~d})=10 \mathrm{P}(\mathrm{~d}-1)+9 \\
& \mathrm{P}(1)=0
\end{aligned}
$$

Hollerith's MSD-First Radix Sort

- Example: To sort 3 digit numbers, in the worst case: $S(d)=(1 / 9)\left(10^{3}-1\right)=111$ sorting passes needed $\mathrm{P}(\mathrm{d})=10^{\mathrm{d}-1}-1=99$ intermediate card piles generated
- MSD-first approach has more recursive calls and intermediate storage requirement
- Expensive for a "tabulating machine" to sort punched cards
- Overhead of recursive calls in a modern computer

LSD-First Radix Sort

- Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine operators.
- It is the counter-intuitive, but the better algorithm.
- Basic algorithm:

Sort numbers on their LSD first
Stable sorting needed!!!
Combine the cards into a single deck in order
Continue this sorting process for the other digits from the LSD to MSD

- Requires only d sorting passes
\square No intermediate card pile generated

LSD-first Radix Sort: Example

Step 1: Sort $1^{\text {st }}$ digit

3	2	9				
4	5	7				
6	5	7				
8	3	9				
4	3	6				
7	2	0				
3	5	5	$\quad \leadsto$	7	2	0
:---	:---	:---	:---			
3	5	5				
4	3	6				
4	5	7				
6	5	7				
3	2	9				
8	3	9				

Step 2: Sort $2^{\text {nd }}$ digit

7	2	0				
3	5	5				
4	3	6				
4	5	7				
6	5	7				
3	2	9				
8	3	9	\quad	7		
:---	:---	:---	:---			
3	2	0				
3	3	9				
8	3	6				
3	5	5				
4	5	7				
6	5	7				

Step 3: Sort $3^{\text {rd }}$ digit
\(\left.\begin{array}{|lll}\hline 7 \& 2 \& 0

3 \& 2 \& 9

4 \& 3 \& 6

8 \& 3 \& 9

3 \& 5 \& 5

4 \& 5 \& 7

6 \& 5 \& 7\end{array}\right] \quad\)| 3 | 2 | 9 |
| :--- | :--- | :--- |
| 3 | 5 | 5 |
| 4 | 3 | 6 |
| 4 | 5 | 7 |
| 6 | 5 | 7 |
| 7 | 2 | 0 |
| 8 | 3 | 9 |

Correctness of Radix Sort (LSD-first)

Proof by induction: Base case: $\mathrm{d}=1$ is correct (trivial)

 Inductive hyp: Assume the first d-1 digits are sorted correctly Prove that all d digits are sorted correctly after sorting digit d

Radix Sort: Runtime

- Use counting-sort to sort each digit

Reminder: Counting sort complexity: $\Theta(\mathrm{n}+\mathrm{k})$
n : size of input array
k : the range of the values

- Radix sort runtime: $\Theta(\mathrm{d}(\mathrm{n}+\mathrm{k}))$
d: \# of digits
- How to choose the d and k ?

Radix Sort: Runtime - Example 1

We have flexibility in choosing d and k

- Assume we are trying to sort 32-bit words
\square We can define each digit to be 4 bits
\square Then, the range for each digit $\mathrm{k}=2^{4}=16$
So, counting sort will take $\Theta(\mathrm{n}+16)$
- The number of digits $d=32 / 4=8$
\square Radix sort runtime: $\Theta(8(n+16))=\Theta(n)$

Radix Sort: Runtime - Example 2

We have flexibility in choosing d and k

- Assume we are trying to sort 32-bit words
\square Or, we can define each digit to be 8 bits
- Then, the range for each digit $\mathrm{k}=2^{8}=256$

So, counting sort will take $\Theta(\mathrm{n}+256)$

- The number of digits $d=32 / 8=4$
- Radix sort runtime: $\Theta(4(\mathrm{n}+256))=\Theta(\mathrm{n})$

8 bits	8 bits	8 bits	8 bits

Radix Sort: Runtime

- Assume we are trying to sort b-bit words
\square Define each digit to be r bits
- Then, the range for each digit $k=2^{r}$

So, counting sort will take $\Theta\left(\mathrm{n}+2^{\mathrm{r}}\right)$

- The number of digits $d=b / r$

Radix sort runtime:

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Radix Sort: Runtime Analysis

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Minimize $\mathrm{T}(\mathrm{n}, \mathrm{b})$ by differentiating and setting to 0
Or, intuitively:
We want to balance the terms $(\mathrm{b} / \mathrm{r})$ and $\left(\mathrm{n}+2^{\mathrm{r}}\right)$
Choose $r \approx \lg n$
If we choose $r \ll \operatorname{lgn} \square\left(n+2^{\prime}\right)$ term doesn't improve
If we choose $r \gg \operatorname{lgn} \square\left(n+2^{r}\right)$ increases exponentially

Radix Sort: Runtime Analysis

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Choose $\mathrm{r}=\operatorname{lgn} \quad \longrightarrow \mathrm{T}(\mathrm{n}, \mathrm{b})=\Theta(\mathrm{bn} / \mathrm{lgn})$

For numbers in the range from 0 to $\mathrm{n}^{\mathrm{d}}-1$, we have:
The number of bits $b=\lg \left(n^{d}\right)=d \operatorname{lgn}$
\square Radix sort runs in $\Theta(\mathrm{dn})$

Radix Sort: Conclusions

$$
\text { Choose } \mathrm{r}=\operatorname{lgn} \quad \Rightarrow \mathrm{T}(\mathrm{n}, \mathrm{~b})=\Theta(\mathrm{bn} / \operatorname{lgn})
$$

- Example: Compare radix sort with merge sort/heapsort

1 million (2^{20}) 32 -bit numbers ($n=2^{20}, b=32$)
Radix sort: $\lceil 32 / 20\rceil=2$ passes
Merge sort/heap sort: $\operatorname{lgn}=20$ passes

- Downsides:

Radix sort has little locality of reference (more cache misses)
The version that uses counting sort is not in-place

- On modern processors, a well-tuned quicksort implementation typically runs faster.

