
1

CS473 - Algorithms I

CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lecture 10

Dynamic Programming

View in slide-show mode

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Introduction

• An algorithm design paradigm like divide-and-conquer

• “Programming”: A tabular method (not writing computer code)

Older sense of planning or scheduling, typically by filling in a table

• Divide-and-Conquer (DAC): subproblems are independent

• Dynamic Programming (DP): subproblems are not independent

• Overlapping subproblems: subproblems share sub-subproblems

– In solving problems with overlapping subproblems

• A DAC algorithm does redundant work

– Repeatedly solves common subproblems

• A DP algorithm solves each problem just once

– Saves its result in a table

3

CS473 - Algorithms I

CS 473 – Lecture 10

Problem 1:

Fibonacci Numbers

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

4CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Fibonacci Numbers (Recursive Solution)

REC-FIBO(n)

if n < 2

return n

else

return REC-FIBO(n-1)

+ REC-FIBO(n-2)

Reminder:

F(0) = 0 and F(1) = 1

F(n) = F(n-1) + F(n-2)

10

9 8

8 7 7 6

Overlapping subproblems in different

recursive calls. Repeated work!

5CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Fibonacci Numbers (Recursive Solution)

Recurrence:

T(n) = T(n-1) + T(n-2) + 1

➔ exponential runtime

Recursive algorithm inefficient because it recomputes

the same F(i) repeatedly in different branches of the

recursion tree.

6CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Fibonacci Numbers (Bottom-up Computation)

ITER-FIBO(n)

F[0] = 0

F[1] = 1

for i = 2 to n do

F[i] = F[i-1] + F[i-2]

return F[n]

Reminder:

F(0) = 0 and F(1) = 1

F(n) = F(n-1) + F(n-2)

8

2

1

0

3

4

5

6

7

Runtime:Θ(n)

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Optimization Problems

• DP typically applied to optimization problems

• In an optimization problem

– There are many possible solutions (feasible solutions)

– Each solution has a value

– Want to find an optimal solution to the problem

• A solution with the optimal value (min or max value)

– Wrong to say “the” optimal solution to the problem

• There may be several solutions with the same optimal value

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Development of a DP Algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal

solution

3. Compute the value of an optimal solution in a

bottom-up fashion

4. Construct an optimal solution from the

information computed in Step 3

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

CS473 - Algorithms I

CS 473 – Lecture 10

Problem 2:

Matric Chain Multiplication

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

10

Example: Matrix-chain Multiplication

• Input: a sequence (chain) A1,A2, , An of n matrices

• Aim: compute the product A1·A2· ·An

• A product of matrices is fully parenthesized if

– It is either a single matrix

– Or, the product of two fully parenthesized matrix products surrounded by

a pair of parentheses.

(Ai(Ai+1Ai+2 Aj))

((AiAi+1Ai+2 Aj-1)Aj)

((AiAi+1Ai+2 Ak)(Ak+1Ak+2 Aj)) for ikj

– All parenthesizations yield the same product; matrix product is associative

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

11

Matrix-chain Multiplication: An Example

Parenthesization

• Input: A1, A2, A3, A4

• 5 distinct ways of full parenthesization

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

• The way we parenthesize a chain of matrices can have a
dramatic effect on the cost of computing the product

12CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Matrix Multiplication

MATRIX-MULTIPLY(A, B)

if cols[A]rows[B] then
error(“incompatible dimensions”)

for i 1 to rows[A] do

for j1 to cols[B] do

C[i,j] 0

for k1 to cols[A] do

C[i,j] C[i,j]+A[i,k]·B[k,j]

return C

=

rows(A) = p

cols(A) = q

q

p

r
r

A B C

x

rows(B) = q

cols(B) = r

p

rows(C) = p

cols(C) = r

13CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Matrix Multiplication

MATRIX-MULTIPLY(A, B)

if cols[A]rows[B] then
error(“incompatible dimensions”)

for i 1 to rows[A] do

for j1 to cols[B] do

C[i,j] 0

for k1 to cols[A] do

C[i,j] C[i,j]+A[i,k]·B[k,j]

return C

A: p x q

B: q x r
C: p x r

of mult-add ops = p x q x r

of mult-add ops

= rows[A] x cols[B] x cols[A]

14CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x1
0

100

A1 A21
0

0

5

= A1A2

5

1
0

A1A2

5

1
0 x 5

50

=A3

50
1

0

of ops: 10 . 100 . 5

= 5000

of ops: 10 . 5 . 50

= 2500

Total # of ops: 7500

A1A2A3

15CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x

1
0

100

A1

A21
0

0

5

=5

50

=

A3

50
1

0

of ops: 100 . 5 . 50

= 25000

of ops: 10 . 100 . 50

= 50000

Total # of ops: 75000

A1A2A3

A2A3

1
0
0

50

A2A3

50

x
1

0
0

16CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

In summary: (A1A2)A3 ➔ # of multiply-add ops: 7500

A1(A2A3) ➔ # of multiple-add ops: 75000

➔ First parenthesization yields 10x faster computation

17CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix-chain Multiplication Problem

Input: A chain A1,A2, , An of n matrices,

where Ai is a pi−1pi matrix

Objective: Fully parenthesize the product

A1 ·A2· ·An

such that the number of scalar mult-adds is minimized.

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

Counting the Number of Parenthesizations

• Brute force approach: exhaustively check all parenthesizations

• P(n): # of parenthesizations of a sequence of n matrices

• We can split sequence between kth and (k+1)st matrices for any

k=1, 2, , n−1, then parenthesize the two resulting sequences

independently, i.e.,

(A1A2A3 Ak)(Ak+1Ak+2 An)

• We obtain the recurrence

P(1) = 1 and P(n) =
−

=

−
1

1

)(P)(P
n

k

knk

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

Number of Parenthesizations:

• The recurrence generates the sequence of Catalan Numbers

• Solution is P(n) = C(n−1) where

C(n) = = (4n/n3/2)

• The number of solutions is exponential in n

• Therefore, brute force approach is a poor strategy

−

=

−
1

1

)()(
n

k

knPkP

1

n+1

2n
n

20CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Structure of Optimal Parenthesization

Notation: Ai..j: The matrix that results from evaluation of the
product: Ai Ai+1 Ai+2 … Aj

Observation: Consider the last multiplication operation in
any parenthesization: (A1 A2 … Ak) . (Ak+1 Ak+2 … An)

There is a k value (1 ≤ k < n) such that:

First, the product A1..k is computed

Then, the product Ak+1..n is computed

Finally, the matrices A1..k and Ak+1..n are
multiplied

21CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Step 1: Characterize the structure of an optimal solution

 An optimal parenthesization of product A1A2…An will be:

(A1 A2 … Ak) . (Ak+1 Ak+2 … An) for some k value

 The cost of this optimal parenthesization will be:

Cost of computing A1..k

+ Cost of computing Ak+1..n

+ Cost of multiplying A1..k . Ak+1..n

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

22

Step 1: Characterize the Structure of an Optimal Solution

• Key observation: Given optimal parenthesization

(A1A2A3 Ak) · (Ak+1Ak+2 An)

– Parenthesization of the subchain A1A2A3 Ak

– Parenthesization of the subchain Ak+1Ak+2 An

should both be optimal

Thus, optimal solution to an instance of the problem contains

optimal solutions to subproblem instances

i.e., optimal substructure within an optimal solution exists.

23CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Step 2: A Recursive Solution

Step 2: Define the value of an optimal solution recursively in

terms of optimal solutions to the subproblems

Assume we are trying to determine the min cost of computing Ai..j

mi,j: min # of scalar multiply-add opns needed to compute Ai..j

Note: The optimal cost of the original problem: m1,n

How to compute mi,j recursively?

24CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Step 2: A recursive Solution

Base case: mi,i = 0 (single matrix, no multiplication)

Let the size of matrix Ai be (pi-1 x pi)

Consider an optimal parenthesization of chain Ai … Aj:

(Ai … Ak) . (Ak+1 … Aj)

The optimal cost: mi,j = mi,k + mk+1, j + pi-1 x pk x pj

where: mi,k: Optimal cost of computing Ai..k

mk+1,j: Optimal cost of computing Ak+1..j

pi-1 x pk x pj : Cost of multiplying Ai..k and Ak+1…j

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

Step 2: A Recursive Solution

In an optimal parenthesization:

k must be chosen to minimize mij

The recursive formulation for mij:

0 if i=j

mij =

MIN{mik + mk+1, j +pi−1pk pj} if i < j
ik<j

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

26

Step 2: A Recursive Solution

• The mij values give the costs of optimal solutions

to subproblems

• In order to keep track of how to construct an

optimal solution

– Define sij to be the value of k which yields the

optimal split of the subchain Ai..j

That is, sij =k such that

mij = mik + mk+1, j +pi−1pk pj holds

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

27

Direct Recursion: Inefficient!

Recursive matrix-chain order

RMC(p, i, j)

if i = j then
return 0

m[i, j]

for k i to j −1 do

q RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

m[i, j] q

return m[i, j]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

28

2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1

k =
 1

k
=
 2

k =
 2

k = 3
k = 3

k
=

2

k =
 3

k
 =

 3k
=
 2

k
 =

 1

k
 =

 1

k
 =

 3

k
 =

 3

k
=
 1

k
 =

 1

k
 =

 2
k =

 2
k

=
 3

k
 =

 3

k
 =

 2

k =
 2 Redundant

calls are

filled

Direct Recursion: Inefficient!

Recursion tree for RMC(p,1,4)
Nodes are labeled

with i and j values

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

29

Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

• We have relatively few subproblems

− one problem for each choice of i and j satisfying 1 i j n

− total n + (n−1) +… + 2 + 1 = n(n+1) = (n2) subproblems

• We can write a recursive algorithm based on recurrence.

• However, a recursive algorithm may encounter each subproblem

many times in different branches of the recursion tree

• This property, overlapping subproblems, is the second important

feature for applicability of dynamic programming

2

1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

30

Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

− matrix Ai has dimensions pi−1 pi for i = 1, 2, …, n

− the input is a sequence p0, p1, …, pn where length[p] = n + 1

Procedure uses the following auxiliary tables:

− m[1…n, 1…n]: for storing the m[i, j] costs

− s[1…n, 1…n]: records which index of k achieved the optimal

cost in computing m[i, j]

31CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Bottom-up computation

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

Before computing mij, we have to make sure that the values

for mik and mk+1,j have been computed for all k.

How to choose the order in which we process mij values?

32CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

i j

k

j

mij

k

mik

mk+1,j

Reminder: mij computed

only for j > i

mij must be processed

after mik and mj,k+1

33CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

i j

k

j

mij
k

mik

mk+1,j

mij must be processed

after mik and mj,k+1

How to set up the

iterations over i and j

to compute mij?

34CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

i j

j

mij

If the entries mij are

computed in the shown

order, then mik and

mk+1,j values are

guaranteed to be

computed before mij.

35CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

j

j = i+1

j = i+2

j = i+3

j = i+4

j = i+5

j = i+6

j = i+7

36CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

j

j = i+-1

for =2 to n

for i=1 to n-+1

j = i + - 1

……

mij = …

……

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

37

Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)

n length[p] −1

for i 1 to n do

m[i, i] 0

for 2 to n do

for i 1 to n − + 1 do

j i + − 1

m[i, j]

for k i to j−1 do

q m[i, k] + m[k+1, j] + pi-1 pk pj

if q < m[i, j] then

m[i, j] q

s[i, j] k

return m and s

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

38

Algorithm for Computing the Optimal Costs

• The algorithm first computes

m[i, i] 0 for i =1, 2, …, n min costs for all chains of length 1

• Then, for = 2, 3, …, n computes

m[i, i+−1] for i = 1, …, n−+1 min costs for all chains of length

• For each value of = 2, 3, …, n,

m[i, i+−1] depends only on table entries m[i, k] & m[k+1, i+−1]

for ik<i+−1, which are already computed

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

39

Algorithm for Computing the Optimal Costs

 = 2
for i = 1 to n − 1

m[i, i+1] = compute m[i, i+1]
for k = i to i do {m[1, 2], m[2, 3], …, m[n−1, n]}

.

. (n−1) values
 = 3
for i = 1 to n − 2

m[i, i+2] = compute m[i, i+2]
for k = i to i+1 do {m[1, 3], m[2, 4], …, m[n−2, n]}

.

. (n−2) values
 = 4
for i = 1 to n − 3

m[i, i+3] = compute m[i, i+3]
for k = i to i+2 do {m[1, 4], m[2, 5], …, m[n−3, n]}

.

. (n−3) values

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

40

Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . −1 j n

 i

n−+1

Table entries already computed

Table entries referenced

 k

 k

for k i to j−1 do

q m[i, k] + m[k+1, j] + pi-1 pk pj

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

41

Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . −1 j n

 i

n−+1

Table entries already computed

Table entries referenced

 k

 k

for k i to j−1 do

q m[i, k] + m[k+1, j] + pi-1 pk pj

((Ai) (Ai+1Ai+2 Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

42

Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . −1 j n

 i

n−+1

Table entries already computed

Table entries referenced

 k

 k

for k i to j−1 do

q m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1) (Ai+2 Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

43

Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . −1 j n

 i

n−+1

Table entries already computed

Table entries referenced

 k

 k

for k i to j−1 do

q m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1Ai+2) (Ai+3Aj))

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

44

Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed

 n

1

Table entries currently computed
 j

 1 2 3 4 i . −1 j n

 i

n−+1

Table entries already computed

Table entries referenced

for k i to j−1 do

q m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1 Aj-1) (Aj))

45CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

2625

750

1000

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2) (A3A4A5)

Compute m25
???

k=2

0

2500

cost = m22 + m35 + p1p2p5

= 0 + 2500 + 35x15x20

= 13000

Choose the k value

that leads to min cost

46CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
???

k=3

0

2500

cost = m23 + m45 + p1p3p5

= 2625+ 1000 + 35x5x20

= 7125

Choose the k value

that leads to min cost

2625

1000

47CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3A4) (A5)

Compute m25
???

k=4

0

2500

cost = m24 + m55 + p1p4p5

= 4375 + 0 + 35x10x20

= 11375

Choose the k value

that leads to min cost

2625

1000

4375

0

48CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
7125

k=3

0

2500

Choose k=3

2625

1000

m25 = 7125

s25 = 3

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

49

Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of scalar mults/adds

− needed to compute a matrix-chain product

− it does not directly show how to multiply the matrices

• That is,

− it determines the cost of the optimal solution(s)

− it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that

optimal parenthesization of Ai … Aj splits the product between Ak & Ak+1

• We know that the final matrix multiplication in computing A1…n optimally
is A1…s[1,n] As[1,n]+1,n

50CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Constructing an Optimal Solution

3

5

1 1 3

3

5

2 3 4 5 6

5

4

3

2

1

A1A2A3A4A5A6

s16 = 3

3

2

4

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

What is the optimal top-level split for:

51CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

(A1A2A3) (A4A5A6)

3

2

4

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

k=3

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5

52CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

4

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

k=1

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5

k=5

53CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

54

54CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) ((A2) (A3))) (((A4) (A5)) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

k=2

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

5

k=4

4

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

55

Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively

Given:

− the chain of matrices A = A1, A2, … An

− the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i, j)

if j > i then

X MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])

Y MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]+1, j)

return MATRIX-MULTIPLY(X, Y)

else

return Ai Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

56

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)=(A1A2A3) MCM(1,3) return A1

YMCM(4,6)=(A4A5A6) XMCM(1,1)=A1

return (?) YMCM(2,3)=(A2A3)
return (?)

 2 3 4 5 6

1 1 1 3 3 3

2 2 3 4 3

 3 3 3 3

4 4 5

 5 5

s[1…6, 1…6]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

57

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)=(A1(A2A3)) MCM(1,3) return A1

YMCM(4,6)=(A4A5A6) XMCM(1,1)=A1

return (?) YMCM(2,3)=(A2A3) MCM(2,3)
return (A1(A2A3)) XMCM(2,2)=A2 return A2

YMCM(3,3)=A3 return A3

return (A2A3)

 2 3 4 5 6

1 1 1 3 3 3

2 2 3 4 3

 3 3 3 3

4 4 5

 5 5

s[1…6, 1…6]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

58

Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)=(A1(A2A3)) MCM(1,3) return A1

YMCM(4,6)=((A4A5)A6) XMCM(1,1)=A1

return (A1(A2A3))((A4A5)A6) YMCM(2,3)=(A2A3) MCM(2,3)
return (A1(A2A3)) XMCM(2,2)=A2 return A2

YMCM(3,3)=A3 return A3

return (A2A3)
MCM(4,6)
XMCM(4,5)=(A4A5) MCM(4,5)
YMCM(6,6)=A6 XMCM(4,4)=A4 return A4

return ((A4A5)A6) YMCM(5,5)=A5 return A5

return (A4A5)

return A6

 2 3 4 5 6

1 1 1 3 3 3

2 2 3 4 3

 3 3 3 3

4 4 5

 5 5

s[1…6, 1…6]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

59

Table reference pattern for m[i, j] (1 i j n)

m[i, j] is referenced for the computation of

− m[i, r] for j < r n (n − j) times

− m[r, j] for 1 r < i (i − 1) times

 Table Entries currently computed

Table entries referencing m[i, j]

The referenced table entry m[i, j]

 n

1 2 3 j n

 i

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

60

Table reference pattern for m[i, j] (1 i j n)

R(i, j) = # of times that m[i, j] is

referenced in computing other entries

R(i, j) = (n−j) + (i−1)

= (n−1) − (j−i)

The total # of references for the entire table is

 Table Entries currently computed

 n

1 2 3 j n

 i

i − 1

n − j

R(i, j) =
n3 - n

3
j=i

n

å
i=1

n

å

61CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Summary

1. Identification of the optimal substructure property

2. Recursive formulation to compute the cost of the

optimal solution

3. Bottom-up computation of the table entries

4. Constructing the optimal solution by backtracing

the table entries

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

62

Elements of Dynamic Programming

• When should we look for a DP solution to an

optimization problem?

• Two key ingredients for the problem

– Optimal substructure

– Overlapping subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

63

DP Hallmark #1

Optimal Substructure

• A problem exhibits optimal substructure

– if an optimal solution to a problem contains within

it optimal solutions to subproblems

• Example: matrix-chain-multiplication

Optimal parenthesization of A1A2 An that splits

the product between Ak and Ak+1,

contains within it optimal soln’s to the problems of

parenthesizing A1A2 Ak and Ak+1Ak+2 An

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

64

Optimal Substructure

Finding a suitable space of subproblems

• Iterate on subproblem instances

• Example: matrix-chain-multiplication

– Iterate and look at the structure of optimal soln’s to

subproblems, sub-subproblems, and so forth

– Discover that all subproblems consists of subchains of

A1, A2, , An

– Thus, the set of chains of the form

Ai,Ai+1, , Aj for 1 i j n

– Makes a natural and reasonable space of subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

65

DP Hallmark #2

Overlapping Subproblems

• Total number of distinct subproblems should

be polynomial in the input size

• When a recursive algorithm revisits the same

problem over and over again

we say that the optimization problem has

overlapping subproblems

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

66

Overlapping Subproblems

• DP algorithms typically take advantage of

overlapping subproblems

– by solving each problem once

– then storing the solutions in a table

where it can be looked up when needed

– using constant time per lookup

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

67

Overlapping Subproblems

Recursive matrix-chain order

RMC(p, i, j)

if i = j then
return 0

m[i, j]

for k i to j −1 do

q RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

m[i, j] q

return m[i, j]

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

68

2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1

k =
 1

k
=
 2

k =
 2

k = 3
k = 3

k
=

2

k =
 3

k
 =

 3k
=
 2

k
 =

 1

k
 =

 1

k
 =

 3

k
 =

 3

k
=
 1

k
 =

 1

k
 =

 2
k =

 2
k

=
 3

k
 =

 3

k
 =

 2

k =
 2 Redundant

calls are

filled

Recursive Matrix-chain Order
Recursion tree for RMC(p,1,4)

Nodes are labeled

with i and j values

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

69

Running Time of RMC
T(1) 1

T(n) 1+ (T(k) + T(n−k) + 1) for n 1

• For i =1, 2, …, n each term T(i) appears twice

– Once as T(k), and once as T(n −k)

• Collect n−1 1’s in the summation together with the

front 1

T(n) 2 T(i) + n

• Prove that T(n) =(2n) using the substitution method

k =1

n − 1

i =1

n − 1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

70

Running Time of RMC: Prove that T(n) = (2n)

• Try to show that T(n) 2n−1 (by substitution)

Base case: T(1) 1 = 20 = 21−1 for n = 1

IH: T(i) 2i−1 for all i =1, 2, …, n −1 and n 2

T(n) 2 2i−1 + n

= 2 2i + n = 2(2n −1 −1) + n

= 2n −1 + (2n −1 −2 + n)

T(n) 2n−1 Q.E.D.

i =1

n − 1

i = 0

n − 2

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

71

Running Time of RMC: T(n) 2n−1

Whenever

– a recursion tree for the natural recursive solution

to a problem contains the same subproblem

repeatedly

– the total number of different subproblems is small

it is a good idea to see if DP can be applied

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

72

Memoization

• Offers the efficiency of the usual DP approach

while maintaining top-down strategy

• Idea is to memoize the natural, but inefficient,

recursive algorithm

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

73

Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each

subproblem

• Each table entry contains a special value to indicate

that the entry has yet to be filled in

• When the subproblem is first encountered its solution

is computed and then stored in the table

• Each subsequent time that the subproblem

encountered the value stored in the table is simply

looked up and returned

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

74

Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if m[i, j] = then

if i = j then
m[i, j] 0

else

for k i to j −1 do

q LookupC(p, i, k) + LookupC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

m[i, j] q

return m[i, j]

MemoizedMatrixChain(p)

n length[p] −1

for i 1 to n do

for j 1 to n do

m[i, j]

return LookupC(p, 1, n)

Shaded subtrees are looked-up

rather than recomputing

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

75

Memoized Recursive Algorithm

• The approach assumes that

– The set of all possible subproblem parameters are

known

– The relation between the table positions and

subproblems is established

• Another approach is to memoize

– by using hashing with subproblem parameters as key

Memoization-based solutions will NOT BE ACCEPTED in the exams!

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

76

Dynamic Programming vs Memoization

Summary

• Matrix-chain multiplication can be solved in O(n3) time

– by either a top-down memoized recursive algorithm

– or a bottom-up dynamic programming algorithm

• Both methods exploit the overlapping subproblems

property

– There are only (n2) different subproblems in total

– Both methods compute the soln to each problem once

• Without memoization the natural recursive algorithm

runs in exponential time since subproblems are solved

repeatedly

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

77

Dynamic Programming vs

Memoization Summary

In general practice

• If all subproblems must be solved at once

– a bottom-up DP algorithm always outperforms a top-down
memoized algorithm by a constant factor

because, bottom-up DP algorithm

• Has no overhead for recursion

• Less overhead for maintaining the table

• DP: Regular pattern of table accesses can be exploited to reduce
the time and/or space requirements even further

• Memoized: If some problems need not be solved at all, it has

the advantage of avoiding solutions to those subproblems

78

CS473 - Algorithms I

CS 473 – Lecture 10

Problem 3:

Longest Common Subsequence

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

79CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Definitions

 A subsequence of a given sequence is just the given

sequence with some elements (possibly none) left out

 Example:

X = < A, B, C, B, D, A, B>

Z = <B, C, D, B>

➔ Z is a subsequence of X

80CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Definitions

Formal definition: Given a sequence X = x1, x2, …, xm,

sequence Z = z1, z2, …, zk is a subsequence of X

if a strictly increasing sequence i1, i2, …, ik of indices of X
such that xi = zj for all j = 1, 2, …, k, where 1 k m

1 2 3 4 5 6 7

Example: Z= B,C,D,B is a subsequence of X= A,B,C,B,D,A,B

with the index sequence i1, i2, i3, i4 = 2, 3, 5, 7

j

81CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Definitions

If Z is a subsequence of both X and Y, we denote Z as a
common subsequence of X and Y.

Example: X = <A, B, C, B, D, A, B> and

Y = <B, D, C, A, B, A>

Z1 = <B, C, A> is a common subsequence (of length 3) of X and Y.

Two longest common subsequence (LCSs) of X and Y?

Z2 = <B, C, B, A> of length 4

Z3 = <B, D, A, B> of length 4

The optimal solution value = 4

82CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Longest Common Subsequence (LCS) Problem

 LCS problem: Given two sequences X = <x1, x2, …, xm> and

Y = <y1, y2, …, yn>, find the LCS of X & Y

 Brute force approach:

 Enumerate all subsequences of X

 Check if each subsequence is also a subsequence of Y

 Keep track of the LCS

 What is the complexity?

◼ There are 2m subsequences of X

➔ Exponential runtime

83CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Notation

Notation: Let Xi denote the ith prefix of X

i.e. Xi = <x1, x2, …, xi>

Example: X = <A, B, C, B, D, A, B>

X4 = <A, B, C, B>, X0 = < >

84CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 1: If xm = yn, how to define the optimal substructure?

xm ynX Y

zkZ

Xm-1 Yn-1

Zk-1

We must have zk = xm = yn and Zk-1 = LCS(Xm-1, Yn-1)

85CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 2: If xm ≠ yn and zk ≠ xm, how to define the optimal substructure?

xmX Y

zkZ

Xm-1 Yn

Zk

We must have Z = LCS(Xm-1, Y)

zk ≠ xm

yn

86CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 3: If xm ≠ yn and zk ≠ yn, how to define the optimal substructure?

xmX Y

zkZ

Xm Yn-1

Zk

We must have Z = LCS(X, Yn-1)

zk ≠ yn

yn

87CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Theorem: Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Theorem: Optimal substructure of an LCS:

1. If xm = yn

then zk = xm =yn and Zk-1 is an LCS of Xm-1 and Yn-1

2. If xm ≠ yn and zk ≠ xm

then Z is an LCS of Xm-1 and Y

3. If xm ≠ yn and zk ≠ yn

then Z is an LCS of X and Yn -1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

88

Optimal Substructure Theorem (case 1)

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1

Xm−1

 1 2 m

X = C Y =

 1 2 n

 C

Yn−1

 C

 1 2 k

Zk−1

LCS

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

89

Optimal Substructure Theorem (case 2)

If xm yn and zk xm then Z is an LCS of Xm−1 and Y

Xm−1

 1 2 m

X = C Y =

 1 2 n

 D

Y

 1 2 k

Z

LCS

Z = C

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

90

Optimal Substructure Theorem (case 3)

If xm yn and zk yn then Z is an LCS of X and Yn −1

X

 1 2 m

X = C Y =

 1 2 n

 D

Yn−1

 D

 1 2 k

Z

LCS

Z =

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

91

Proof of Optimal Substructure Theorem (case 1)

Proof: If zk xm= yn then

we can append xm = yn to Z to obtain a common

subsequence of length k+1 contradiction

Thus, we must have zk = xm = yn

Hence, the prefix Zk−1 is a length-(k−1) CS of Xm−1 and Yn−1

We have to show that Zk−1 is in fact an LCS of Xm−1 and Yn−1

Proof by contradiction:

Assume that a CS W of Xm−1 and Yn−1 with |W| = k

Then appending xm = yn to W produces a CS of length k+1

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

92

Proof of Optimal Substructure Theorem (case 2)

Proof : If zk xm then Z is a CS of Xm−1 and Yn

We have to show that Z is in fact an LCS of Xm−1 and Yn

(Proof by contradiction)

Assume that a CS W of Xm−1 and Yn with |W| > k

Then W would also be a CS of X and Y

Contradiction to the assumption that

Z is an LCS of X and Y with |Z| = k

Case 3: Dual of the proof for (case 2)

If xm yn and zk xm then Z is an LCS of Xm−1 and Y

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

93

A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if xm = yn then

we must solve the subproblem of finding an LCS of Xm−1 & Yn−1

appending xm = yn to this LCS yields an LCS of X & Y

else

we must solve two subproblems

− finding an LCS of Xm−1 & Y

− finding an LCS of X & Yn−1

longer of these two LCSs is an LCS of X & Y

endif

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

94

Recursive Algorithm (Inefficient!!!)

LCS(X, Y)

m length[X]

n length[Y]

if xm = yn then

Z LCS(Xm−1, Yn−1) solve one subproblem

return <Z, xm = yn> append xm = yn to Z

else

Z LCS(Xm−1, Y)

Z LCS(X, Yn−1)

return longer of Z and Z

 solve two subproblems

95CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

A Recursive Solution

c[i, j]: length of an LCS of Xi and Yj

ji

ji

yxji

yxji

ji

jicjic

jicjic

=

==

−−

+−−=

 and 0, if

 and 0, if

0or 0 if

]},1[],1,[max{

1]1,1[

0

],[

96CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Computing the Length of an LCS

 We can easily write an exponential-time recursive algorithm
based on the given recurrence. ➔ Inefficient!

 How many distinct subproblems to solve?

Θ(mn)

 Overlapping subproblems property: Many subproblems share the
same sub-subproblems.

e.g. Finding an LCS to Xm−1 & Y and an LCS to X & Yn−1

has the sub-subproblem of finding an LCS to Xm−1 & Yn−1

 Therefore, we can use dynamic programming.

97CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Data Structures

Let:

c[i, j]: length of an LCS of Xi and Yj

b[i, j]: direction towards the table entry corresponding to

the optimal subproblem solution chosen when

computing c[i, j]. Used to simplify the construction

of an optimal solution at the end.

Maintain the following tables:

c[0…m, 0…n]

b[1…m, 1…n]

98CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Bottom-up Computation

How to choose the order in which we process c[i, j] values?

ji

ji

yxji

yxji

ji

jicjic

jicjic

=

==

−−

+−−=

 and 0, if

 and 0, if

0or 0 if

]},1[],1,[max{

1]1,1[

0

],[

Reminder:

The values for c[i-1, j-1], c[i, j-1], and c[i-1,j] must be computed

before computing c[i, j].

99CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

m

i

j

ji

ji

yxji

yxji

ji

jicjic

jicjic

=

==

−−

+−−=

 and 0, if

 and 0, if

0or 0 if

]},1[],1,[max{

1]1,1[

0

],[

j-1

c[i, j]

i-1

Need to process:

c[i, j]

after computing:

c[i-1, j-1],

c[i, j-1],

c[i-1,j]

100CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

m

i

j

ji

ji

yxji

yxji

ji

jicjic

jicjic

=

==

−−

+−−=

 and 0, if

 and 0, if

0or 0 if

]},1[],1,[max{

1]1,1[

0

],[

j-1

c[i, j]

i-1

for i⟵ 1 to m

for j⟵ 1 to n

….

….

c[i, j] =

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

101

Computing the Length of an LCS

LCS-LENGTH(X,Y)
m length[X]; n length[Y]
for i 0 to m do c[i, 0] 0
for j 0 to n do c[0, j] 0
for i 1 to m do

for j 1 to n do
if xi = yj then

c[i, j] c[i−1, j−1]+1

b[i, j] “”
else if c[i − 1, j] c[i, j−1]

c[i, j] c[i−1, j]
b[i, j] “”

else
c[i, j] c[i, j−1]

b[i, j] “”

Total runtime = Θ(mn)

Total space = Θ(mn)

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

102

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0

 0

 0

 0

 0

 0

 0 0 0 0 0 0 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

103

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

1 A

 0

 0 0 0 0 1 1 1

 0

 0

 0

 0

 0

 0 0 0 0 0 0 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

104

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0

 0

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

105

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

106

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

107

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

108

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

109

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2 2

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

110

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2 2 3

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

111

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 0 0 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2 2 3 3

 0

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

112

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2 2 3 3

 0 1 2 2 2 3 3

 0

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

113

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

 0

 0 0 0 0 1 1 1

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2 2 3 3

 0 1 2 2 2 3 3

 0 1 2 2 3 3 4

 j 0 1 2 3 4 5 6

 yj B D C A B A

 0 0 0 0 0 0 0

i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

114

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

Running-time = O(mn)
since each table entry takes

O(1) time to compute

 0 1 2 3 3 4 4

 0 1 1 1 1 2 2

 0 1 1 2 2 2 2

 0 1 1 2 2 3 3

 0 1 2 2 2 3 3

 0 1 2 2 3 3 4

 0 0 0 0 1 1 1

 0 0 0 0 0 0 0

 j 0 1 2 3 4 5 6

 yj B D C A B A i

0 xi

1 A

2 B

3 C

4 B

5 D

6 A

7 B

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

115

Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1 2 3 4 5 6 7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1 2 3 4 5 6

Running-time = O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y = <B, C, B, A>

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

116

Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly

construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “” in entry b[i, j]

it implies that xi = yj is an element of LCS

The elements of LCS are encountered in reverse order

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

117

Constructing an LCS

PRINT-LCS(b, X, i, j)

if i = 0 or j = 0 then

return
if b[i, j] = “” then

PRINT-LCS(b, X, i−1, j−1)
print xi

else if b[i, j] = “” then

PRINT-LCS(b, X, i−1, j)
else

PRINT-LCS(b, X, i, j−1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(m+n) time

since at least one of i and j is decremented in each stage of the recursion

The initial invocation:

PRINT-LCS(b, X, length[X], length[Y])

118CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 1 2 2

0 1 1 2 2 2 2

0 1 1 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 3 3 4

0 1 2 3 3 4 4

∅ B D C A B A

∅

A

B

C

B

D

A

B

Question: From which neighbor

did we expand to the highlighted

cell?

Answer: Upper-left neighbor,

because X[i] = Y[j].

119CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 1 2 2

0 1 1 2 2 2 2

0 1 1 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 3 3 4

0 1 2 3 3 4 4

∅ B D C A B A

∅

A

B

C

B

D

A

B

Question: From which neighbor

did we expand to the highlighted

cell?

Answer: Left neighbor,

because X[i] ≠ Y[j] and

LCS[i, j-1] > LCS[i-1, j].

120CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 1 2 2

0 1 1 2 2 2 2

0 1 1 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 3 3 4

0 1 2 3 3 4 4

∅ B D C A B A

∅

A

B

C

B

D

A

B

Question: From which neighbor

did we expand to the highlighted

cell?

Answer: Upper neighbor,

because X[i] ≠ Y[j] and

LCS[i, j-1] = LCS[i-1, j].

(See pseudo-code to see

how ties are handled.)

CS473 – Lecture 10 Cevdet Aykanat - Bilkent University

Computer Engineering Department

121

Improving the Space Requirements

We can eliminate the b table altogether

− each c[i, j] entry depends only on 3 other c table entries:
c[i−1, j−1], c[i−1, j] and c[i, j−1]

Given the value of c[i, j]:

− We can determine in O(1) time which of these 3 values
was used to compute c[i, j] without inspecting table b

− We save (mn) space by this method

− However, space requirement is still (mn)

since we need (mn) space for the c table anyway

122CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

What if we store the last 2 rows only?

0 1 1 2 2 2 2

0 1 1 2

∅ B D C A B A

∅

A

B

C

B

D

A

B

2 3 3

To compute c[i, j], we only need

c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last

two rows.

123CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

What if we store the last 2 rows only?

0 1 1 2

∅ B D C A B A

∅

A

B

C

B

D

A

B

2 3 3

0 1 2 2 2 3 3

To compute c[i, j], we only need

c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last

two rows.

124CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

What if we store the last 2 rows only?

∅ B D C A B A

∅

A

B

C

B

D

A

B

To compute c[i, j], we only need

c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last

two rows.

0 1 2 2 2 3 3

0 1 2 2 Is there a problem with this

approach?

This reduces space complexity

from (mn) to (n).

125CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

What if we store the last 2 rows only?

∅ B D C A B A

∅

A

B

C

B

D

A

B

0 1 2 2 2 3 3

0 1 2 2

We cannot construct the optimal

solution because we cannot

backtrace anymore.

This approach works if we only

need the length of an LCS,

not the actual LCS.

Is there a problem with this

approach?

126

CS473 - Algorithms I

CS 473 – Lecture 10

Problem 4

Optimal Binary Search Tree

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

127CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Binary Search Tree (BST)

All keys in the

left subtree

less than 8

All keys in the

right subtree

greater than 8

This property

holds for all nodes.
Image from Wikimedia

128CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST

➢Keyword: English word

➢Satellite data: French word

end

do then

begin else if while

We can search for an

English word (node key)

efficiently, and return the

corresponding French

word (satellite data).

129CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

begin do else end if then while

5% 40% 8% 4% 10% 10% 23%

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

130CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

Example: If we search for

keyword “while”, we need

to access 3 nodes. So, 23%

of the queries will have

cost of 3.

Total cost = (depth(i)+1) × freq(i)

i
å

= 1x0.04 + 2x0.4 + 2x0.1 + 3x0.05 + 3x0.08 + 3x0.1 + 3x0.23

= 2.42

131CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

end
4%

if

10%

while

23%

else

8%

begin

5%

do

40%

then
10%

A different binary search tree (BST) leads

to a different total cost:

Total cost = 1x0.4 + 2x0.05 + 2x0.23 +

3x0.1 + 4x0.08 + 4x0.1 +

5x0.04

= 2.18

This is in fact an optimal BST.

132CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Binary Search Tree Problem

Given:

A collection of n keys K1 < K2 < … Kn to be stored in a BST.

The corresponding pi values for 1 ≤ i ≤ n

pi: probability of searching for key Ki

Find:

An optimal BST with minimum total cost:

Total cost = (depth(i)+1) × freq(i)

i
å

Note: The BST will be static. Only search operations will be

performed. No insert, no delete, etc.

133CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

Lemma 1: Let Tij be a BST containing keys Ki < Ki+1 < … < Kj.

Let TL and TR be the left and right subtrees of T. Then we have:

cost(Tij) = cost(TL)+ cost(TR)+ ph
h=i

j

å

TL TR

Intuition: When we add the root node, the

depth of each node in TL and TR increases

by 1. So, the cost of node h increases by

ph. In addition, the cost of root node r is pr.

That’s why, we have the last term at the

end of the formula above.

134CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST Tij for keys Ki < Ki+1 < … < Kj

Let Km be the key at the root of Tij

Ti,m-1 Tm+1,j

Km

Then:

Ti,m-1 is an optimal BST for subproblem

containing keys: Ki < … < Km-1

Tm+1,j is an optimal BST for subproblem

containing keys: Km+1 < … < Kj

cost(Tij) = cost(Ti,m-1)+ cost(Tm+1, j)+ ph
h=i

j

å

135CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Recursive Formulation

Note: We don’t know which root vertex leads to the minimum total cost. So, we
need to try each vertex m, and choose the one with minimum total cost.

c[i, j]: cost of an optimal BST Tij for the subproblem Ki < … < Kj

where Pij = ph
h=i

j

å

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

136CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Bottom-up computation

Before computing c[i, j], we have to make sure that the

values for c[i, r-1] and c[r+1,j] have been computed for all r.

How to choose the order in which we process c[i, j] values?

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

137CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

i j

r

j

c[i, j]

r

c[i,r-1]

c[r+1,j]

c[i,j] must be processed

after c[i,r-1] and c[r+1,j]

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

138CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

i j

j

c[i,j]

If the entries c[i,j] are

computed in the shown

order, then c[i,r-1] and

c[r+1,j] values are

guaranteed to be

computed before c[i,j].

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

139CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Computing the Optimal BST Cost

OPTIMAL-BST-COST (p, n)

for i ← 1 to n do

c[i, i-1] ← 0

c[i, i] ← p[i]

R[i, j] ← i

PS[1] ← p[1] // PS[i]: prefix_sum(i): Sum of all p[j] values for j ≤ i

for i ← 2 to n do
PS[i] ← p[i] + PS[i-1] // compute the prefix sum

for d ← 1 to n−1 do // BSTs with d+1 consecutive keys

for i ← 1 to n – d do

j ← i + d

c[i, j] ← ∞

for r ← i to j do

q ← min{c[i,r-1] + c[r+1, j]} + PS[j] – PS[i-1]}

if q < c[i, j] then

c[i, j] ← q

R[i, j] ← r

return c[1, n], R

140CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Note on Prefix Sum

 We need Pij values for each i, j (1 ≤ i ≤ n and 1 ≤ j ≤ n),

where:

 If we compute the summation directly for every (i, j) pair, the

runtime would be Θ(n3).

 Instead, we spend O(n) time in preprocessing to compute the

prefix sum array PS. Then we can compute each Pij in O(1)

time using PS.

Pij = ph
h=i

j

å

141CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Note on Prefix Sum

In preprocessing, compute for each i:

PS[i]: the sum of p[j] values for 1 ≤ j ≤ i

Then, we can compute Pij in O(1) time as follows:

Pij = PS[i] – PS[j-1]

Example:

1 2 3 4 5 6 7 8

p: 0.05 0.02 0.06 0.07 0.20 0.05 0.08 0.02

PS: 0.05 0.07 0.13 0.20 0.40 0.45 0.53 0.55

P27 = PS[7] – PS[1] = 0.53 – 0.05 = 0.48

P36 = PS[6] – PS[2] = 0.45 – 0.07 = 0.38

