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Introduction

• An algorithm design paradigm like divide-and-conquer

• “Programming”: A tabular method (not writing computer code)

Older sense of planning or scheduling, typically by filling in a table

• Divide-and-Conquer (DAC): subproblems are independent

• Dynamic Programming (DP): subproblems are not independent

• Overlapping subproblems: subproblems share sub-subproblems

– In solving problems with overlapping subproblems

• A DAC algorithm does redundant work

– Repeatedly solves common subproblems

• A DP algorithm solves each problem just once

– Saves its result in a table
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Example: Fibonacci Numbers (Recursive Solution)

REC-FIBO(n)

if n < 2

return n

else

return REC-FIBO(n-1) 

+ REC-FIBO(n-2) 

Reminder:  

F(0) = 0 and F(1) = 1

F(n) = F(n-1) + F(n-2)

10

9 8

8 7 7 6

Overlapping subproblems in different

recursive calls. Repeated work!
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Example: Fibonacci Numbers (Recursive Solution)

Recurrence: 

T(n) = T(n-1) + T(n-2) + 1

➔ exponential runtime

Recursive algorithm inefficient because it recomputes

the same F(i) repeatedly in different branches of the 

recursion tree.
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Example: Fibonacci Numbers (Bottom-up Computation)

ITER-FIBO(n)

F[0] = 0

F[1] = 1

for i = 2 to n do

F[i] = F[i-1] + F[i-2]

return F[n]

Reminder:  

F(0) = 0 and F(1) = 1

F(n) = F(n-1) + F(n-2)

8

2

1

0

3

4

5

6

7

Runtime:Θ(n)
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Optimization Problems

• DP typically applied to optimization problems

• In an optimization problem

– There are many possible solutions (feasible solutions)

– Each solution has a value

– Want to find an optimal solution to the problem

• A solution with the optimal value (min or max value)

– Wrong to say “the” optimal solution to the problem

• There may be several solutions with the same optimal value
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Development of a DP Algorithm

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal 

solution

3. Compute the value of an optimal solution in a 

bottom-up fashion

4. Construct an optimal solution from the 

information computed in Step 3
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Example: Matrix-chain Multiplication

• Input: a sequence (chain) A1,A2,  , An of n matrices

• Aim: compute the product A1·A2· ·An

• A product of matrices is fully parenthesized if

– It is either a single matrix

– Or, the product of two fully parenthesized matrix products surrounded by 

a pair of parentheses. 

(Ai(Ai+1Ai+2  Aj))

((AiAi+1Ai+2  Aj-1)Aj)

((AiAi+1Ai+2  Ak)(Ak+1Ak+2  Aj)) for ikj

– All parenthesizations yield the same product; matrix product is associative
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Matrix-chain Multiplication: An Example 

Parenthesization

• Input: A1, A2, A3, A4

• 5 distinct ways of full parenthesization

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

• The way we parenthesize a chain of matrices can have a 
dramatic effect on the cost of computing the product
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Reminder: Matrix Multiplication

MATRIX-MULTIPLY(A, B)

if cols[A]rows[B] then 
error(“incompatible dimensions”)

for i 1 to rows[A] do

for j1 to cols[B] do

C[i,j]  0

for k1 to cols[A] do

C[i,j] C[i,j]+A[i,k]·B[k,j]

return C 

=

rows(A) = p

cols(A)  = q

q

p

r
r

A B C

x

rows(B) = q

cols(B)  = r

p

rows(C) = p

cols(C)  = r
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Reminder: Matrix Multiplication

MATRIX-MULTIPLY(A, B)

if cols[A]rows[B] then 
error(“incompatible dimensions”)

for i 1 to rows[A] do

for j1 to cols[B] do

C[i,j]  0

for k1 to cols[A] do

C[i,j] C[i,j]+A[i,k]·B[k,j]

return C 

A: p x q

B: q x r 
C: p x r

# of mult-add ops = p x q x r

# of mult-add ops 

= rows[A] x cols[B] x cols[A]
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Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x1
0

100

A1 A21
0

0

5

= A1A2

5

1
0

A1A2

5

1
0 x 5

50

=A3

50
1

0

# of ops: 10 . 100 . 5

= 5000

# of ops: 10 . 5 . 50

= 2500

Total # of ops: 7500

A1A2A3
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Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

x

1
0

100

A1

A21
0

0

5

=5

50

=

A3

50
1

0

# of ops: 100 . 5 . 50

= 25000

# of ops: 10 . 100 . 50

= 50000

Total # of ops: 75000

A1A2A3

A2A3

1
0
0

50

A2A3

50

x
1

0
0
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Matrix Chain Multiplication: Example

A1: 10x100 A2: 100x5 A3: 5x50

Which paranthesization is better? (A1A2)A3 or A1(A2A3)?

In summary:   (A1A2)A3 ➔ # of multiply-add ops: 7500

A1(A2A3) ➔ # of multiple-add ops: 75000 

➔ First parenthesization yields 10x faster computation
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Matrix-chain Multiplication Problem

Input: A chain A1,A2,  , An  of n matrices, 

where Ai is a pi−1pi matrix

Objective: Fully parenthesize the product 

A1 ·A2· ·An

such that the number of scalar mult-adds is minimized.
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Counting the Number of Parenthesizations

• Brute force approach: exhaustively check all parenthesizations

• P(n): # of parenthesizations of a sequence of n matrices

• We can split sequence between kth and (k+1)st matrices for any 

k=1, 2,  , n−1, then parenthesize the two resulting sequences 

independently, i.e.,

(A1A2A3  Ak)(Ak+1Ak+2  An)

• We obtain the recurrence

P(1) = 1 and P(n) =
−

=

−
1

1

)(P)(P
n

k

knk
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Number of Parenthesizations: 

• The recurrence generates the sequence of Catalan Numbers

• Solution is P(n) = C(n−1) where

C(n) =                   = (4n/n3/2) 

• The number of solutions is exponential in n

• Therefore, brute force approach is a poor strategy


−

=

−
1

1

)()(
n

k

knPkP

1

n+1

2n
n
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The Structure of Optimal Parenthesization

Notation: Ai..j: The matrix that results from evaluation of the 
product: Ai Ai+1 Ai+2 … Aj

Observation: Consider the last multiplication operation in 
any parenthesization: (A1 A2 … Ak) . (Ak+1 Ak+2 … An)

There is a k value (1 ≤ k < n) such that:

First, the product A1..k is computed

Then, the product Ak+1..n is computed

Finally, the matrices A1..k and Ak+1..n are 
multiplied
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Step 1: Characterize the structure of an optimal solution

 An optimal parenthesization of product A1A2…An will be:

(A1 A2 … Ak) . (Ak+1 Ak+2 … An) for some k value

 The cost of this optimal parenthesization will be:

Cost of computing A1..k

+  Cost of computing Ak+1..n

+ Cost of multiplying A1..k . Ak+1..n
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Step 1: Characterize the Structure of an Optimal Solution

• Key observation: Given optimal parenthesization

(A1A2A3  Ak) · (Ak+1Ak+2  An)

– Parenthesization of the subchain A1A2A3  Ak

– Parenthesization of the subchain Ak+1Ak+2  An

should both be optimal

Thus, optimal solution to an instance of the problem contains 

optimal solutions to subproblem instances

i.e., optimal substructure within an optimal solution exists.



23CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Step 2: A Recursive Solution

Step 2: Define the value of an optimal solution recursively in 

terms of optimal solutions to the subproblems

Assume we are trying to determine the min cost of computing Ai..j

mi,j: min # of scalar multiply-add opns needed to compute Ai..j

Note: The optimal cost of the original problem: m1,n

How to compute mi,j recursively?



24CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Step 2: A recursive Solution

Base case: mi,i = 0 (single matrix, no multiplication)

Let the size of matrix Ai be (pi-1 x pi)

Consider an optimal parenthesization of chain Ai … Aj:

(Ai … Ak) . (Ak+1 … Aj)

The optimal cost: mi,j = mi,k + mk+1, j + pi-1 x pk x pj

where:       mi,k: Optimal cost of computing Ai..k

mk+1,j: Optimal cost of computing Ak+1..j

pi-1 x pk x pj : Cost of multiplying Ai..k and Ak+1…j
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Step 2: A Recursive Solution

In an optimal parenthesization:

k must be chosen to minimize mij

The recursive formulation for mij:

0 if  i=j

mij =

MIN{mik + mk+1, j +pi−1pk pj}      if i < j
ik<j
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Step 2: A Recursive Solution

• The mij values give the costs of optimal solutions 

to subproblems 

• In order to keep track of how to construct an 

optimal solution

– Define sij to be the value of k which yields the 

optimal split of the subchain Ai..j

That is, sij =k such that

mij = mik + mk+1, j +pi−1pk pj holds
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Direct Recursion: Inefficient!

Recursive matrix-chain order

RMC(p, i, j)

if i = j then 
return 0

m[i, j]  

for k i to j −1 do

q  RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j] 
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2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1

k =
 1

k 
=
 2

k =
 2

k = 3
k = 3

k 
= 

2

k =
 3

k
 =

 3k 
=
 2

k
 =

 1

k
 =

 1

k
 =

 3

k
 =

 3

k 
=
 1

k
 =

 1

k
 =

 2
k =

 2
k 

=
 3

k
 =

 3

k
 =

 2

k =
 2 Redundant

calls are

filled

Direct Recursion: Inefficient!

Recursion tree for RMC(p,1,4)
Nodes are labeled 

with i and j values
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Computing the Optimal Cost (Matrix-Chain Multiplication)

An important observation:

• We have relatively few subproblems

− one problem for each choice of i and j satisfying 1  i  j  n

− total n + (n−1) +… + 2 + 1 = n(n+1) = (n2) subproblems

• We can write a recursive algorithm based on recurrence. 

• However, a recursive algorithm may encounter each subproblem

many times in different branches of the recursion tree

• This property, overlapping subproblems, is the second important 

feature for applicability of dynamic programming

2

1
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Computing the Optimal Cost (Matrix-Chain Multiplication)

Compute the value of an optimal solution in a bottom-up fashion

− matrix Ai has dimensions pi−1  pi for i = 1, 2, …, n

− the input is a sequence p0, p1, …, pn where length[p] = n + 1

Procedure uses the following auxiliary tables:

− m[1…n, 1…n]: for storing the m[i,  j] costs

− s[1…n, 1…n]:  records which index of k achieved the optimal 

cost in computing m[i,  j]



31CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Bottom-up computation

mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

Before computing mij, we have to make sure that the values 

for mik and mk+1,j have been computed for all k.

How to choose the order in which we process mij values?
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mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

i j

k

j

mij

k

mik

mk+1,j

Reminder: mij computed 

only for j > i

mij must be processed

after mik and mj,k+1
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mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

i j

k

j

mij
k

mik

mk+1,j

mij must be processed

after mik and mj,k+1

How to set up the 

iterations over i and j

to compute mij?
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mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

i j

j

mij

If the entries mij are

computed in the shown

order, then mik and

mk+1,j values are

guaranteed to be 

computed before mij.
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mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

j

j = i+1

j = i+2

j = i+3

j = i+4

j = i+5

j = i+6

j = i+7
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mij =
i£k< j
min mik +mk+1, j + pi-1pkp j{ }

1 n

1

n

i

j

j = i+-1

for =2 to n 

for i=1 to n-+1

j = i +  - 1

……

mij = …

……
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Algorithm for Computing the Optimal Costs

MATRIX-CHAIN-ORDER(p)

n  length[p] −1

for i  1 to n do

m[i, i]  0

for  2 to n do

for i  1 to n −  + 1 do

j  i +  − 1

m[i, j] 

for k  i to j−1 do

q  m[i, k] + m[k+1, j] + pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

s[i, j]  k

return m and s



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

38

Algorithm for Computing the Optimal Costs

• The algorithm first computes 

m[i, i]  0 for i =1, 2, …, n min costs for all chains of length 1

• Then, for  = 2, 3, …, n computes 

m[i, i+−1] for i = 1, …, n−+1 min costs for all chains of length 

• For each value of  = 2, 3, …, n,

m[i, i+−1] depends only on table entries m[i, k] & m[k+1, i+−1] 

for ik<i+−1, which are already computed
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Algorithm for Computing the Optimal Costs

 = 2
for i = 1 to n − 1

m[i, i+1] =  compute m[i, i+1]
for k = i to i do                     {m[1, 2], m[2, 3], …, m[n−1, n]}

.

.                                                 (n−1) values
 = 3
for i = 1 to n − 2

m[i, i+2] =  compute m[i, i+2]
for k = i to i+1 do                {m[1, 3], m[2, 4], …, m[n−2, n]}

.

.                                                 (n−2) values
 = 4
for i = 1 to n − 3

m[i, i+3] =  compute m[i, i+3]
for k = i to i+2 do                {m[1, 4], m[2, 5], …, m[n−3, n]}

.

.                                                 (n−3) values



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

40

Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . −1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n−+1 

 

Table entries already computed 

Table entries referenced  

 k 

 k 

for k  i to j−1 do

q  m[i, k] + m[k+1, j] + pi-1 pk pj
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Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . −1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n−+1 

 

Table entries already computed 

Table entries referenced  

 k 

 k 

for k  i to j−1 do

q  m[i, k] + m[k+1, j] + pi-1 pk pj

((Ai) (Ai+1Ai+2  Aj))
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Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . −1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n−+1 

 

Table entries already computed 

Table entries referenced  

  k 

 k 

for k  i to j−1 do

q  m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1) (Ai+2  Aj))
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Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . −1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n−+1 

 

Table entries already computed 

Table entries referenced  

  k 

 k 

for k  i to j−1 do

q  m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1Ai+2 ) (Ai+3Aj))
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Table access pattern in computing m[i, j]s for =j−i+1
 Table Entries currently computed 

 

 n 

1 

Table entries currently computed 
 j 

  1  2   3   4 .  .  .  . i  . −1    .  .  .  .  .  .  .  . j .  .  .  .  .  n 

 i 

 

 

n−+1 

 

Table entries already computed 

Table entries referenced  

for k  i to j−1 do

q  m[i, k] + m[k+1, j] + pi-1 pk pj

((AiAi+1 Aj-1) (Aj))
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Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

2625

750

1000

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2) (A3A4A5)

Compute m25
???

k=2

0

2500

cost = m22 + m35 + p1p2p5

= 0 + 2500 + 35x15x20

= 13000 

Choose the k value

that leads to min cost
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Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
???

k=3

0

2500

cost = m23 + m45 + p1p3p5

= 2625+ 1000 + 35x5x20

= 7125

Choose the k value

that leads to min cost

2625

1000
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Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3A4) (A5)

Compute m25
???

k=4

0

2500

cost = m24 + m55 + p1p4p5

= 4375 + 0 + 35x10x20

= 11375

Choose the k value

that leads to min cost

2625

1000

4375

0
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Example
mij =

i£k< j
min mik +mk+1, j + pi-1pkp j{ }

A1: (30x35)

A2: (35x15)

A3: (15x5)

A4: (5x10)

A5: (10x20)

A6: (20x25)

0

750

5000

15750 7875 9375

0

0

0

0

4375

3500

1 2 3 4 5 6

6

5

4

3

2

1

(A2A3) (A4A5)

Compute m25
7125

k=3

0

2500

Choose k=3

2625

1000

m25 = 7125

s25 = 3
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Constructing an Optimal Solution

• MATRIX-CHAIN-ORDER determines the optimal # of  scalar mults/adds

− needed to compute a matrix-chain product

− it does not directly show how to multiply the matrices

• That is,

− it determines the cost of the optimal solution(s)

− it does not show how to obtain an optimal solution

• Each entry s[i, j] records the value of k such that

optimal parenthesization of Ai … Aj splits the product between Ak & Ak+1

• We know that the final matrix multiplication in computing A1…n optimally 
is A1…s[1,n] As[1,n]+1,n
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Example: Constructing an Optimal Solution

3

5

1 1 3

3

5

2 3 4 5 6

5

4

3

2

1

A1A2A3A4A5A6

s16 = 3 

3

2

4

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

What is the optimal top-level split for:
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

(A1A2A3) (A4A5A6)

3

2

4

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

k=3

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

4

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

k=1

What is the optimal split for A1…A3? s13 = 1

What is the optimal split for A4…A6? s46 = 5

1

5

k=5
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) (A2A3)) ((A4A5) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

54
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Example: Constructing an Optimal Solution

3

5

1 3

3

2 3 4 5 6

5

4

3

2

1

((A1) ((A2) (A3))) (((A4) (A5)) (A6))

3

2

3 3

33

3

Reminder: sij is the optimal

top-level split of Ai…Aj

k=2

What is the optimal split for A2A3? s23 = 2

What is the optimal split for A4A5? s45 = 4

1

5

k=4

4
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Constructing an Optimal Solution

Earlier optimal matrix multiplications can be computed recursively 

Given: 

− the chain of matrices A = A1, A2, … An

− the s table computed by MATRIX-CHAIN-ORDER

The following recursive procedure computes the matrix-chain product Ai…j

MATRIX-CHAIN-MULTIPLY(A, s, i,  j)

if j > i then

X  MATRIX-CHAIN-MULTIPLY(A, s, i, s[i, j])

Y  MATRIX-CHAIN-MULTIPLY(A, s, s[i, j]+1, j)

return MATRIX-MULTIPLY(X, Y)

else

return Ai Invocation: MATRIX-CHAIN-MULTIPLY(A, s, 1, n)
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)=(A1A2A3) MCM(1,3)                            return A1

YMCM(4,6)=(A4A5A6) XMCM(1,1)=A1

return (?)                                        YMCM(2,3)=(A2A3)
return (?)                  

 

 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)=(A1(A2A3))        MCM(1,3)                            return A1

YMCM(4,6)=(A4A5A6)             XMCM(1,1)=A1

return (?)                                        YMCM(2,3)=(A2A3)       MCM(2,3)
return (A1(A2A3))                  XMCM(2,2)=A2 return A2

YMCM(3,3)=A3            return A3

return (A2A3) 

 

 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Example: Recursive Construction of an Optimal Solution

MCM(1,6)
XMCM(1,3)=(A1(A2A3))        MCM(1,3)                            return A1

YMCM(4,6)=((A4A5)A6)          XMCM(1,1)=A1

return (A1(A2A3))((A4A5)A6)        YMCM(2,3)=(A2A3)       MCM(2,3)
return (A1(A2A3))                  XMCM(2,2)=A2 return A2

YMCM(3,3)=A3            return A3

return (A2A3) 
MCM(4,6)
XMCM(4,5)=(A4A5)       MCM(4,5)
YMCM(6,6)=A6                        XMCM(4,4)=A4 return A4

return ((A4A5)A6 )                 YMCM(5,5)=A5           return A5

return (A4A5)

return A6

 

 2      3     4      5      6 

1    1      1     3      3      3 

2    2     3      4      3 

  3    3      3      3 

4    4      5 

 5      5 

s[1…6, 1…6] 
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Table reference pattern for m[i, j] (1  i  j  n)

m[i, j] is referenced for the computation of

− m[i, r] for j < r  n (n − j ) times

− m[r, j] for 1  r < i (i − 1 ) times

 Table Entries currently computed 
 

Table entries referencing m[i, j] 

The referenced table entry m[i, j] 

 n 
 

1  2   3                                            j                             n 

 i 
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Table reference pattern for m[i, j] (1  i  j  n)

R(i, j) = # of times that m[i, j] is

referenced in computing other entries

R(i, j) = (n−j) + (i−1)

= (n−1) − (j−i)

The total # of references for the entire table is

 Table Entries currently computed 
 

 n 
 

1  2   3                                            j                             n 

 i 
 

 

 

 

  

i − 1 

n − j 

R(i, j) =
n3 - n

3
j=i

n

å
i=1

n

å
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Summary

1. Identification of the optimal substructure property

2. Recursive formulation to compute the cost of the 

optimal solution

3. Bottom-up computation of the table entries

4. Constructing the optimal solution by backtracing

the table entries
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Elements of Dynamic Programming

• When should we look for a DP solution to an 

optimization problem?

• Two key ingredients for the problem

– Optimal substructure 

– Overlapping subproblems
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DP Hallmark #1

Optimal Substructure

• A problem exhibits optimal substructure 

– if an optimal solution to a problem contains within 

it optimal solutions to subproblems

• Example: matrix-chain-multiplication

Optimal parenthesization of A1A2 An that splits 

the product between Ak and Ak+1, 

contains within it optimal soln’s to the problems of 

parenthesizing A1A2 Ak and Ak+1Ak+2  An
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Optimal Substructure

Finding a suitable space of subproblems

• Iterate on subproblem instances

• Example: matrix-chain-multiplication

– Iterate and look at the structure of optimal soln’s to 

subproblems, sub-subproblems, and so forth

– Discover that all subproblems consists of subchains of     

A1, A2,  , An

– Thus, the set of chains of the form 

Ai,Ai+1,  , Aj for 1 i  j  n

– Makes a natural and reasonable space of subproblems
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DP Hallmark #2

Overlapping Subproblems

• Total number of distinct subproblems should 

be polynomial in the input size

• When a recursive algorithm revisits the same 

problem over and over again

we say that the optimization problem has 

overlapping subproblems
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Overlapping Subproblems

• DP algorithms typically take advantage of 

overlapping subproblems

– by solving each problem once

– then storing the solutions in a table

where it can be looked up when needed

– using constant time per lookup
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Overlapping Subproblems

Recursive matrix-chain order

RMC(p, i, j)

if i = j then 
return 0

m[i, j]  

for k i to j −1 do

q  RMC(p, i, k) + RMC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j] 
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2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4 1..1 2..3 1..2 3..3

3..3 4..4 2..2 3..3 2..2 3..3 1..1 2..2

1..1 2..4 1..2 3..4 1..3 4..4

1..4

k = 1

k =
 1

k 
=
 2

k =
 2

k = 3
k = 3

k 
= 

2

k =
 3

k
 =

 3k 
=
 2

k
 =

 1

k
 =

 1

k
 =

 3

k
 =

 3

k 
=
 1

k
 =

 1

k
 =

 2
k =

 2
k 

=
 3

k
 =

 3

k
 =

 2

k =
 2 Redundant

calls are

filled

Recursive Matrix-chain Order
Recursion tree for RMC(p,1,4)

Nodes are labeled 

with i and j values
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Running Time of RMC
T(1)  1

T(n)  1+  (T(k) + T(n−k) + 1) for n 1

• For i =1, 2, …, n each term T(i) appears twice

– Once as T(k), and once as T(n −k) 

• Collect n−1 1’s in the summation together with the 

front 1

T(n)  2  T(i) + n

• Prove that T(n) =(2n) using the substitution method

k =1

n − 1

i =1

n − 1
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Running Time of RMC: Prove that T(n) = (2n)

• Try to show that T(n)  2n−1 (by substitution)

Base case: T(1)  1 = 20 = 21−1 for n = 1

IH: T(i)  2i−1 for all  i =1, 2, …, n −1 and n  2

T(n)  2  2i−1 + n

= 2  2i + n = 2(2n −1 −1) + n 

= 2n −1 + (2n −1 −2 + n)

T(n)  2n−1 Q.E.D.

i =1

n − 1

i = 0

n − 2



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

71

Running Time of RMC: T(n)  2n−1

Whenever 

– a recursion tree for the natural recursive solution 

to a problem contains the same subproblem 

repeatedly

– the total number of different subproblems is small 

it is a good idea to see if DP can be applied
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Memoization

• Offers the efficiency of the usual DP approach 

while maintaining top-down strategy 

• Idea is to memoize the natural, but inefficient, 

recursive algorithm
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Memoized Recursive Algorithm

• Maintains an entry in a table for the soln to each 

subproblem 

• Each table entry contains a special value to indicate 

that the entry has yet to be filled in

• When the subproblem is first encountered its solution 

is computed and then stored in the table

• Each subsequent time that the subproblem 

encountered the value stored in the table is simply 

looked up and returned
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Memoized Recursive Matrix-chain Order

LookupC(p, i, j)

if m[i, j] =  then 

if i = j then 
m[i, j]  0

else

for k  i to j −1 do

q  LookupC(p, i, k) + LookupC(p, k+1, j) + pi-1 pk pj

if q < m[i, j] then

m[i, j]  q

return m[i, j] 

MemoizedMatrixChain(p)

n  length[p] −1 

for i 1 to n do

for j 1 to n do

m[i, j]  

return LookupC(p, 1, n)

Shaded subtrees are looked-up 

rather than recomputing
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Memoized Recursive Algorithm

• The approach assumes that

– The set of all possible subproblem parameters are 

known

– The relation between the table positions and

subproblems is established

• Another approach is to memoize

– by using hashing with subproblem parameters as key

Memoization-based solutions will NOT BE ACCEPTED in the exams!
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Dynamic Programming vs Memoization

Summary

• Matrix-chain multiplication can be solved in O(n3) time

– by either a top-down memoized recursive algorithm

– or a bottom-up dynamic programming algorithm

• Both methods exploit the overlapping subproblems

property

– There are only (n2) different subproblems in total 

– Both methods compute the soln to each problem once

• Without memoization the natural recursive algorithm 

runs in exponential time since subproblems are solved 

repeatedly



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

77

Dynamic Programming vs

Memoization Summary

In general practice

• If all subproblems must be solved at once

– a bottom-up DP algorithm always outperforms a top-down 
memoized algorithm by a constant factor

because, bottom-up DP algorithm

• Has no overhead for recursion

• Less overhead for maintaining the table

• DP: Regular pattern of table accesses can be exploited to reduce 
the time and/or space requirements even further

• Memoized: If some problems need not be solved at all, it has 

the advantage of avoiding solutions to those subproblems
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Definitions

 A subsequence of a given sequence is just the given 

sequence with some elements (possibly none) left out

 Example:

X = < A, B, C, B, D, A, B>

Z = <B, C, D, B>

➔ Z is a subsequence of X
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Definitions

Formal definition: Given a sequence X = x1, x2, …, xm,

sequence Z = z1, z2, …, zk is a subsequence of X

if  a strictly increasing sequence i1, i2, …, ik  of indices of X
such that xi = zj for all  j = 1, 2, …, k, where 1  k  m

1    2   3    4   5    6    7

Example: Z= B,C,D,B is a subsequence of X= A,B,C,B,D,A,B

with the index sequence i1, i2, i3, i4  = 2, 3, 5, 7

j
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Definitions

If Z is a subsequence of both X and Y, we denote Z as a 
common subsequence of X and Y.

Example: X = <A, B, C, B, D, A, B> and 

Y = <B, D, C, A, B, A>

Z1 = <B, C, A> is a common subsequence (of length 3) of X and Y.

Two longest common subsequence (LCSs) of X and Y?

Z2 = <B, C, B, A> of length 4

Z3 = <B, D, A, B> of length 4

The optimal solution value = 4
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Longest Common Subsequence (LCS) Problem

 LCS problem: Given two sequences X = <x1, x2, …, xm> and 

Y = <y1, y2, …, yn>,  find the LCS of X & Y

 Brute force approach:

 Enumerate all subsequences of X

 Check if each subsequence is also a subsequence of Y

 Keep track of the LCS 

 What is the complexity?

◼ There are 2m subsequences of X

➔ Exponential runtime
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Notation

Notation: Let Xi denote the ith prefix of X

i.e. Xi = <x1, x2, …, xi> 

Example: X = <A, B, C, B, D, A, B>

X4 = <A, B, C, B>,    X0 = < >



84CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 1: If xm = yn, how to define the optimal substructure?

xm ynX Y

zkZ

Xm-1 Yn-1

Zk-1

We must have zk = xm = yn and Zk-1 = LCS(Xm-1, Yn-1)
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Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 2: If xm ≠ yn and zk ≠ xm, how to define the optimal substructure?

xmX Y

zkZ

Xm-1 Yn

Zk

We must have Z = LCS(Xm-1, Y) 

zk ≠ xm

yn
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Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Question 3: If xm ≠ yn and zk ≠ yn, how to define the optimal substructure?

xmX Y

zkZ

Xm Yn-1

Zk

We must have Z = LCS(X, Yn-1) 

zk ≠ yn

yn
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Theorem: Optimal Substructure of an LCS

Let X = <x1, x2, …, xm> and Y = <y1, y2, …, yn> are given

Let Z = <z1, z2, …, zk> be an LCS of X and Y

Theorem: Optimal substructure of an LCS:

1. If xm = yn

then zk = xm =yn and Zk-1 is an LCS of Xm-1 and Yn-1

2. If xm ≠ yn and zk ≠ xm

then Z is an LCS of Xm-1 and Y

3. If xm ≠ yn and zk ≠ yn

then Z is an LCS of X and Yn -1
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Optimal Substructure Theorem (case 1)

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1 

Xm−1 

   1    2                                       m 

X =   C Y = 

   1    2                                       n 

  C 

Yn−1 

  C 

   1    2                                       k 

Zk−1 

LCS 
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Optimal Substructure Theorem (case 2)

If xm  yn and zk  xm then Z is an LCS of Xm−1 and Y
 

Xm−1 

   1    2                                       m 

X =   C Y = 

   1    2                                       n 

  D 

Y 

   1    2                                       k 

Z 

LCS 

Z =   C 
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Optimal Substructure Theorem (case 3)

If xm  yn and zk  yn then Z is an LCS of X and Yn −1 

X 

   1    2                                       m 

X =   C Y = 

   1    2                                       n 

  D 

Yn−1 

  D 

   1    2                                       k 

Z 

LCS 

Z = 
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Proof of Optimal Substructure Theorem (case 1)

Proof: If zk  xm= yn then 

we can append xm = yn to Z to obtain a common    

subsequence of length k+1  contradiction

Thus, we must have zk = xm = yn

Hence, the prefix Zk−1 is a length-(k−1) CS of Xm−1 and Yn−1

We have to show that Zk−1 is in fact an LCS of Xm−1 and Yn−1

Proof by contradiction:

Assume that  a CS W of Xm−1 and Yn−1 with |W| = k

Then appending xm = yn to W produces a CS of length k+1

If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1
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Proof of Optimal Substructure Theorem (case 2)

Proof : If zk  xm then Z is a CS of Xm−1 and Yn

We have to show that Z is in fact an LCS of Xm−1 and Yn

(Proof by contradiction)

Assume that  a CS W of Xm−1 and Yn with |W| > k

Then W would also be a CS of X and Y

Contradiction to the assumption that

Z is an LCS of X and Y with |Z| = k

Case 3: Dual of the proof for (case 2)

If xm  yn and zk  xm then Z is an LCS of Xm−1 and Y
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A Recursive Solution to Subproblems

Theorem implies that there are one or two subproblems to examine

if xm = yn then

we must solve the subproblem of finding an LCS of Xm−1 & Yn−1

appending xm = yn to this LCS yields an LCS of X & Y

else

we must solve two subproblems

− finding an LCS of Xm−1 & Y

− finding an LCS of X & Yn−1

longer of these two LCSs is an LCS of X & Y

endif



CS473 – Lecture 10 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

94

Recursive Algorithm (Inefficient!!!)

LCS(X, Y)

m  length[X]

n  length[Y]

if xm = yn then

Z  LCS(Xm−1, Yn−1)     solve one subproblem

return <Z, xm = yn>         append xm = yn to Z

else

Z  LCS(Xm−1, Y)

Z  LCS(X, Yn−1)

return longer of Z and Z

 solve two subproblems



95CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

A Recursive Solution

c[i, j]: length of an LCS of Xi and Yj

ji

ji

yxji

yxji

ji

jicjic

jicjic



=

==









−−

+−−=

 and 0, if

 and 0, if

0or  0 if

]},1[],1,[max{

1]1,1[

0

],[
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Computing the Length of an LCS

 We can easily write an exponential-time recursive algorithm
based on the given recurrence. ➔ Inefficient!

 How many distinct subproblems to solve?

Θ(mn)

 Overlapping subproblems property: Many subproblems share the 
same sub-subproblems.

e.g. Finding an LCS to Xm−1 & Y and an LCS to X & Yn−1

has the sub-subproblem of finding an LCS to Xm−1 & Yn−1

 Therefore, we can use dynamic programming.
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Data Structures

Let:

c[i, j]: length of an LCS of Xi and Yj

b[i, j]: direction towards the table entry corresponding to 

the optimal subproblem solution chosen when 

computing c[i, j]. Used to simplify the construction 

of an optimal solution at the end.

Maintain the following tables:

c[0…m, 0…n]

b[1…m, 1…n]
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Bottom-up Computation

How to choose the order in which we process c[i, j] values?

ji

ji

yxji

yxji

ji

jicjic

jicjic



=

==









−−

+−−=

 and 0, if

 and 0, if

0or  0 if

]},1[],1,[max{

1]1,1[

0

],[

Reminder:

The values for c[i-1, j-1], c[i, j-1], and c[i-1,j] must be computed

before computing c[i, j].
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1 n

1

m

i

j

ji

ji

yxji

yxji

ji

jicjic

jicjic



=

==









−−

+−−=

 and 0, if

 and 0, if

0or  0 if

]},1[],1,[max{

1]1,1[

0

],[

j-1

c[i, j]

i-1

Need to process:

c[i, j]

after computing:

c[i-1, j-1], 

c[i, j-1],  

c[i-1,j]
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1 n

1

m

i

j

ji

ji

yxji

yxji

ji

jicjic

jicjic



=

==









−−

+−−=

 and 0, if

 and 0, if

0or  0 if

]},1[],1,[max{

1]1,1[

0

],[

j-1

c[i, j]

i-1

for i⟵ 1 to m

for j⟵ 1 to n

….

….

c[i, j] = 
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Computing the Length of an LCS

LCS-LENGTH(X,Y)
m  length[X]; n  length[Y]
for i  0 to m do c[i, 0]  0
for j  0 to n do c[0, j]  0
for i  1 to m do

for j  1 to n do
if xi = yj then

c[i, j]  c[i−1, j−1]+1

b[i, j]  “”
else if c[i − 1, j]  c[i, j−1]

c[i, j]  c[i−1, j]
b[i, j]  “”

else
c[i, j]  c[i, j−1]

b[i, j]  “”

Total runtime = Θ(mn)

Total space = Θ(mn)
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

             

  0          

          

  0          

             

  0          

 

  0          

             

  0          

             

  0          

          

  0          

 

  0         0        0        0         0        0        0   

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

1 A 

          

  0          

                                                

  0         0        0        0         1    1        1 

          

  0          

             

  0          

          

  0          

             

  0          

             

  0          

 

  0         0        0        0         0        0       0    

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

             

  0          

          

  0          

             

  0          

              

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0  

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

          

  0          

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0  

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                    

  0         1        

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                          

  0         1        1            

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                 

  0         1        1        2         

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2         

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3      

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

 

  0         0        0        0         0        0        0     

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

             

  0          

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

                                               

  0         1        2        2        2        3         3 

             

  0          

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0   

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

 

 

          

  0          

                                                

  0         0        0        0         1    1        1 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

                                               

  0         1        2        2        2        3         3 

                                            

  0         1        2        2        3        3         4 

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A 

 

  0         0        0        0         0        0        0    

i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

Running-time = O(mn)
since each table entry takes

O(1) time to compute

 

 

                                               

  0         1        2        3        3        4         4 

                                            

  0         1    1     1        1       2     2 

                                                  

  0         1        1        2     2       2         2 

                                     

  0         1        1        2        2        3     3 

                                               

  0         1        2        2        2        3         3 

                                            

  0         1        2        2        3        3         4 

                                                

  0         0        0        0         1    1        1 

 

  0         0        0        0         0        0        0   

       j       0         1        2        3         4        5       6 

               yj             B       D       C        A       B       A i 

0 xi 

1 A 

2 B 

3 C 

4 B 

5 D 

6 A 

7 B 
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Computing the Length of an LCS

Operation of LCS-LENGTH
on the sequences

1     2     3     4    5      6     7

X = <A, B, C, B, D, A, B>

Y = <B, D, C, A, B, A>
1     2     3     4     5      6

Running-time = O(mn)
since each table entry takes

O(1) time to compute

LCS of X & Y = <B, C, B, A>
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Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly 

construct an LCS of X & Y

Begin at b[m, n] and trace through the table following arrows

Whenever you encounter a “” in entry b[i, j] 

it implies that xi = yj is an element of LCS

The elements of LCS are encountered in reverse order
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Constructing an LCS

PRINT-LCS(b, X, i, j)

if i = 0 or j = 0 then

return
if b[i, j] = “” then

PRINT-LCS(b, X, i−1, j−1)
print xi

else if b[i, j] = “” then

PRINT-LCS(b, X, i−1, j)
else

PRINT-LCS(b, X, i, j−1)

The recursive procedure PRINT-LCS prints out LCS in proper order

This procedure takes O(m+n) time 

since at least one of i and j is decremented in each stage of the recursion

The initial invocation:

PRINT-LCS(b, X, length[X], length[Y])
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Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 1 2 2

0 1 1 2 2 2 2

0 1 1 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 3 3 4

0 1 2 3 3 4 4

∅ B D C A B A

∅

A

B

C

B

D

A

B

Question: From which neighbor 

did we expand to the highlighted

cell?

Answer: Upper-left neighbor,

because X[i] = Y[j].
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Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 1 2 2

0 1 1 2 2 2 2

0 1 1 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 3 3 4

0 1 2 3 3 4 4

∅ B D C A B A

∅

A

B

C

B

D

A

B

Question: From which neighbor 

did we expand to the highlighted

cell?

Answer: Left neighbor,

because X[i] ≠ Y[j] and

LCS[i, j-1] > LCS[i-1, j].
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Do we really need the b table (back-pointers)?

0 0 0 0 0 0 0

0 0 0 0 1 1 1

0 1 1 1 1 2 2

0 1 1 2 2 2 2

0 1 1 2 2 3 3

0 1 2 2 2 3 3

0 1 2 2 3 3 4

0 1 2 3 3 4 4

∅ B D C A B A

∅

A

B

C

B

D

A

B

Question: From which neighbor 

did we expand to the highlighted

cell?

Answer: Upper neighbor,

because X[i] ≠ Y[j] and

LCS[i, j-1] = LCS[i-1, j].

(See pseudo-code to see

how ties are handled.)
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Improving the Space Requirements

We can eliminate the b table altogether

− each c[i, j] entry depends only on 3 other c table entries: 
c[i−1, j−1], c[i−1, j] and c[i, j−1]

Given the value of c[i, j]:

− We can determine in O(1) time which of these 3 values 
was used to compute c[i, j] without inspecting table b

− We save (mn) space by this method

− However, space requirement is still (mn) 

since we need (mn) space for the c table anyway
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What if we store the last 2 rows only?

0 1 1 2 2 2 2

0 1 1 2

∅ B D C A B A

∅

A

B

C

B

D

A

B

2 3 3

To compute c[i, j], we only need 

c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last

two rows.
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What if we store the last 2 rows only?

0 1 1 2

∅ B D C A B A

∅

A

B

C

B

D

A

B

2 3 3

0 1 2 2 2 3 3

To compute c[i, j], we only need 

c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last

two rows.
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What if we store the last 2 rows only?

∅ B D C A B A

∅

A

B

C

B

D

A

B

To compute c[i, j], we only need 

c[i-1, j-1], c[i-1, j], and c[i-1, j-1]

So, we can store only the last

two rows.

0 1 2 2 2 3 3

0 1 2 2 Is there a problem with this

approach?

This reduces space complexity

from (mn) to (n).
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What if we store the last 2 rows only?

∅ B D C A B A

∅

A

B

C

B

D

A

B

0 1 2 2 2 3 3

0 1 2 2

We cannot construct the optimal

solution because we cannot

backtrace anymore.

This approach works if we only

need the length of an LCS,

not the actual LCS.

Is there a problem with this

approach?
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Reminder: Binary Search Tree (BST)

All keys in the

left subtree 

less than 8

All keys in the

right subtree 

greater than 8

This property

holds for all nodes.
Image from Wikimedia
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Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST

➢Keyword: English word

➢Satellite data: French word

end

do then

begin else if while

We can search for an 

English word (node key) 

efficiently, and  return the 

corresponding French

word (satellite data).
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Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

begin do  else end if   then while

5%       40%     8%      4%     10%    10%       23%

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%
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Cost of a Binary Search Tree

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

Example: If we search for

keyword “while”, we need

to access 3 nodes. So, 23%

of the queries will have

cost of 3.

Total cost = (depth(i)+1) × freq(i)

i
å

= 1x0.04 + 2x0.4 + 2x0.1 + 3x0.05 + 3x0.08 + 3x0.1 + 3x0.23

= 2.42
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Cost of a Binary Search Tree

end
4%

if

10%

while

23%

else

8%

begin

5%

do

40%

then
10%

A different binary search tree (BST) leads

to a different total cost:

Total cost = 1x0.4 + 2x0.05 + 2x0.23 +

3x0.1 + 4x0.08 + 4x0.1 +

5x0.04

= 2.18

This is in fact an optimal BST.



132CS 473 – Lecture 10 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Optimal Binary Search Tree Problem

Given:

A collection of n keys K1 < K2 < … Kn to be stored in a BST.

The corresponding pi values for 1 ≤ i ≤ n

pi: probability of searching for key Ki

Find:

An optimal BST with minimum total cost:

Total cost = (depth(i)+1) × freq(i)

i
å

Note: The BST will be static. Only search operations will be 

performed. No insert, no delete, etc.
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Cost of a Binary Search Tree

Lemma 1: Let Tij be a BST containing keys Ki < Ki+1 < … < Kj.

Let TL and TR be the left and right subtrees of T. Then we have:

cost(Tij ) = cost(TL )+ cost(TR )+ ph
h=i

j

å

TL TR

Intuition: When we add the root node, the 

depth of each node in TL and TR increases 

by 1. So, the cost of node h increases by 

ph. In addition, the cost of root node r is pr. 

That’s why, we have the last term at the 

end of the formula above.
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Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST Tij for keys Ki < Ki+1 < … < Kj

Let Km be the key at the root of Tij

Ti,m-1 Tm+1,j

Km

Then: 

Ti,m-1 is an optimal BST for subproblem 

containing keys: Ki < … < Km-1

Tm+1,j is an optimal BST for subproblem 

containing keys: Km+1 < … < Kj

cost(Tij ) = cost(Ti,m-1)+ cost(Tm+1, j )+ ph
h=i

j

å
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Recursive Formulation

Note: We don’t know which root vertex leads to the minimum total cost. So, we 
need to try each vertex m, and choose the one with minimum total cost.

c[i, j]: cost of an optimal BST Tij for the subproblem Ki < … < Kj

where Pij = ph
h=i

j

å

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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Bottom-up computation

Before computing c[i, j], we have to make sure that the 

values for c[i, r-1] and c[r+1,j] have been computed for all r.

How to choose the order in which we process c[i, j] values?

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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1 n

1

n

i

i j

r

j

c[i, j]

r

c[i,r-1]

c[r+1,j]

c[i,j] must be processed

after c[i,r-1] and c[r+1,j]

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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1 n

1

n

i

i j

j

c[i,j]

If the entries c[i,j] are

computed in the shown

order, then c[i,r-1] and

c[r+1,j] values are

guaranteed to be 

computed before c[i,j].

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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Computing the Optimal BST Cost

OPTIMAL-BST-COST (p, n)

for i ← 1 to n do

c[i, i-1] ← 0

c[i, i] ← p[i]

R[i, j] ← i

PS[1] ← p[1]    // PS[i]: prefix_sum(i): Sum of all p[j] values for j ≤ i

for i ← 2 to n do
PS[i] ← p[i] + PS[i-1]   // compute the prefix sum

for d ← 1 to n−1 do // BSTs with d+1 consecutive keys

for i ← 1 to n – d do

j ← i + d

c[i, j] ← ∞

for r ← i to j do

q ← min{c[i,r-1] + c[r+1, j]} + PS[j] – PS[i-1]} 

if q < c[i, j] then

c[i, j] ← q

R[i, j] ← r

return c[1, n], R
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Note on Prefix Sum

 We need Pij values for each i, j (1 ≤ i ≤ n and 1 ≤ j ≤ n), 

where: 

 If we compute the summation directly for every (i, j) pair, the 

runtime would be Θ(n3).

 Instead, we spend O(n) time in preprocessing to compute the 

prefix sum array PS. Then we can compute each Pij in O(1)

time using PS.

Pij = ph
h=i

j

å
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Note on Prefix Sum

In preprocessing, compute for each i:

PS[i]: the sum of p[j] values for 1 ≤ j ≤ i

Then, we can compute Pij in O(1) time as follows:

Pij = PS[i] – PS[j-1]

Example: 

1           2          3          4          5         6          7          8

p:   0.05    0.02   0.06   0.07   0.20   0.05   0.08   0.02

PS:   0.05    0.07   0.13   0.20   0.40   0.45   0.53   0.55

P27 = PS[7] – PS[1] = 0.53 – 0.05 = 0.48 

P36 = PS[6] – PS[2] = 0.45 – 0.07 = 0.38  


