
1

CS473 - Algorithms I

CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lecture 12

Amortized Analysis

View in slide-show mode

2CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Amortized Analysis

 Consider a sequence of operations, where

some operations are expensive,

some others are cheap.

 Key point: The time required to perform a sequence of
operations is averaged over all operations performed.

 Amortized analysis can be used to show that:

 The average cost of an operation is small

even though a single operation might be expensive

(when we average over a sequence of operations).

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Amortized Analysis vs Average

Case Analysis

• Amortized analysis does not use any

probabilistic reasoning

• Amortized analysis guarantees

the average performance of each operation

in the worst case

4CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Stack Operations

PUSH (S, x): push object x onto stack

POP(S): pop the top of the stack S and return the popped object

MULTIPOP(S, k):

pop and return the k top objects of the stack S if |S| ≥ k

or pop and return the entire stack if |S| < k

Runtimes:

PUSH(S, x): (1)

POP(S): (1)

MULTIPOP(S, k): (min(|S|, k))

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

Stack Operations: Multipop

MULTIPOP(S, k)

while not StackEmpty(S) and k 0 do

t POP(S)

k k −1

return Running time:

(min(s, k)) where s = | S |

6CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Runtime Analysis of Stack Operations

 We want to analyze a sequence of n POP, PUSH, and MULTIPOP
operations on an initially empty stack.

 What is the worst-case runtime of a MULTIPOP operation?

O(n) because the stack size is at most n

 What is the worst-case runtime of a sequence of n operations?

O(n2) because we may have O(n) MULTIPOPs, each costing O(n)

 The analysis is correct, but it is not tight!

We can obtain a tighter bound by using amortized analysis.

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Amortized Analysis Techniques

The most common three techniques

– The aggregate method

– The accounting method

– The potential method

If there are several types of operations in a sequence

• The aggregate method assigns

– The same amortized cost to each operation

• The accounting method and the potential method may assign

– Different amortized costs to different types of operations

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

The Aggregate Method

• Show that sequence of n operations takes

– Worst case time T(n) in total for all n

• The amortized cost (average cost in the worst
case) per operation is therefore T(n)n

• This amortized cost applies to each operation

– Even when there are several types of operations in
the sequence

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

The Aggregate Method:

Stack Operations
• Aggregate method considers the entire sequence of n

operations

– Although a single MULTIPOP can be expensive

– Any sequence of n POP, PUSH, and MULTIPOP operations on
an initially empty stack can cost at most O(n)

Proof: Each object can be popped once for each time it is pushed.
Hence the number of times that POP can be called on a

nonempty stack including the calls within MULTIPOP is at most

the number of PUSH operations, which is at most n

The amortized cost of an operation is the average O(n)n = O(1)

10CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Incrementing a Binary Counter

 Implement k-bit binary counter that counts upward from 0

 Store the bits of counter in array A[0..k-1], where

length(A) = k

A[0]: the least significant bit

A[k-1]: the most significant bit

 The binary value stored is:

010011100101110111000001

x = A[i].2i

i=0

k-1

å

11CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Counter Increment

Same idea as the hardware

implementation of a ripple-carry

counter.

e.g. 000010011111 ⟹

000010100000

INCREMENT(A, k)

i 0
while i k and A[i] = 1 do

A[i] 0
i i +1

if i k then

A[i] 1

return

To add 1 (mod 2k) to the counter:

12CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Counter Increment

Initially, x = 0

i.e. A[i] = 0 for all 0 ≤ i ≤ k

What is the worst case runtime

for INCREMENT(A,k) ?

(k) when A contains all 1s

What is the worst case runtime of n

INCREMENT operations starting

from a zero counter?

O(kn)

INCREMENT(A, k)

i 0
while i k and A[i] = 1 do

A[i] 0
i i +1

if i k then

A[i] 1

return

To add 1 (mod 2k) to the counter:

NOT TIGHT!

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

13

The Aggregate Method:

Incrementing a Binary Counter
Counter

value [7] [6] [5] [4] [3] [2] [1] [0]

Incre

cost

Total

cost

0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 11 1 1

0 0 0 0 0 0 1 02 2 3

0 0 0 0 0 0 1 13 1 4

0 0 0 0 0 1 0 04 3 7

0 0 0 0 0 1 0 15 1 8

0 0 0 0 0 1 1 06 2 10

0 0 0 0 0 1 1 17 1 11

0 0 0 0 1 0 0 08 4 15

0 0 0 0 1 0 0 19 1 16

00 0 0 0 1 0 110 2 18
0 0 0 0 1 0 1 111 1 19

Bits that

flip to

achieve the

next value

are shaded

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

The Aggregate Method:

Incrementing a Binary Counter
• Note that, the running time of an increment operation

is proportional to the number of bits flipped

• However, all bits are not flipped at each INCREMENT

A[0] flips at each increment operation

A[1] flips at alternate increment operations

A[2] flips only once for 4 successive increment operations

• In general, bit A[i] flips n/2i times in a sequence of n

INCREMENTs

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

The Aggregate Method:

Incrementing a Binary Counter

• Therefore, the total number of flips in the

sequence is

• The amortized cost of each operation is

O(n)n = O(1)

k-1

i = 0

n/2i

i = 0

1/2i n =2n

16CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Accounting Method

 We assign different charges to different operations

Some operations are charged more than their real cost

Some are charged less than their real cost

 The amount charged for an operation is called its

amortized cost.

 When the amortized cost of an operation exceeds its

actual cost, the difference is assigned to specific

objects in the data structure as credit.

 Credit can be used later to help pay for operations of

which amortized cost is less than their actual cost.

17CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

Suppose the unit cost of pushing or popping a stack element is $1

Let’s assign the following amortized costs:

PUSH: $2

POP: $0

MULTIPOP: $0

Notes:

 Amortized cost of MULTIPOP is a constant (0), whereas the actual cost
is variable

 All amortized costs are O(1) in this example. In general, amortized costs
of different operations may differ asymptotically.

18CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

$2 $1

Notes .

$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1

39 $1

PUSH(39) $2 $1 $1 credit stored

19CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

$2 $1

Notes .

$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1

39 $1

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

20CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

$2 $1

Notes .

$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1

17 $1

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

PUSH(17) $2 $1 $1 credit stored

PUSH(23) $2 $1 $1 credit stored

23 $1

21CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

$2 $1

Notes .

$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

10 $1

17 $1

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

PUSH(17) $2 $1 $1 credit stored

PUSH(23) $2 $1 $1 credit stored

23 $1

MULTIPOP(3) $0 $3 $3 credit used

22CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: Accounting Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

$2 $1

Notes .

$1 credit stored

$1

PUSH(10) $2 $1 $1 credit stored

PUSH(39) $2 $1 $1 credit stored

POP() $0 $1 $1 credit used

PUSH(17) $2 $1 $1 credit stored

PUSH(23) $2 $1 $1 credit stored

MULTIPOP(3) $0 $3 $3 credit used

sum of amortized costs ≥ sum of real costs

23CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Accounting Method for Stack Operations - Notes

 Intuitively:

 For every PUSH operation, we pay $2:

$1 for the real cost of PUSH

$1 pre-payment for the future POP of this item

(stored as credit)

 Each POP operation (stand-alone or within MULTI-POP):

◼ pays for the real cost by using the credit stored for the
corresponding item.

 The total credit is always nonnegative in a sequence of n
operations starting with an empty stack.

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

24

The Accounting Method: Stack Operations

Thus by charging the push operation a little bit more we

don’t need to charge anything from the pop & multipop

operations

We have ensured that the amount of credit is always nonnegative

• since each item in the stack always has $1 of credit

• and the stack always has a nonnegative number of items

Thus, for any sequence of n push, pop, multipop operations

the total amortized cost is an upper bound

on the total actual cost

25CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Accounting Method (cont’d)

 The amortized cost of an operation can be considered as:

amortized cost = actual cost + credit

where credit is either deposited (positive) or used (negative)

 Key point in accounting method:

• The total amortized cost of a sequence of operations

must be an upper bound on the total actual cost.

• This relationship must hold for all sequences of operations

ai
i=1

n

å ³ ci
i=1

n

å ai: amortized cost of operation i

ci: real cost of operation i

26CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Accounting Method (cont’d)

The total credit stored after n operations is:

ai
i=1

n

å ³ ci
i=1

n

å ai: amortized cost of operation i

ci: real cost of operation i

For any sequence of n operations, we must have:

total _credit = ai
i=1

n

å - ci
i=1

n

å

For the above inequality to hold, the total credit must be

nonnegative at all times.

27CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Accounting Method - Summary

 Assign an amortized cost for each operation.

 For operation i, let ai and ci be the amortized and the real cost of i.

If ai > ci ⟹ store (ai-ci) as credit

If ai < ci ⟹ use (ci-ai) stored credit

 If we never run out of credit in a sequence of n operations, we can

say that:

ai
i=1

n

å ³ ci
i=1

n

å ai: amortized cost of operation i

ci: real cost of operation i

In other words, the sum of amortized costs for n operations is

an upper bound for the sum of real costs.

28CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Accounting Method Example: Binary Counter Increment

 Reminder: The running time of an increment operation is
proportional to the # of bits flipped.

 Analyze using accounting method:

 Charge an amortized cost of $2 to set a bit from 0 to 1, and
$0 to set a bit from 1 to 0.

 Intuition: When a bit is set to 1

◼We use $1 to pay for the actual cost of setting the bit to 1

◼We place the other $1 on the bit as credit.

◼At any point, every 1-bit in the counter has $1 credit on it

◼Hence, we don’t need to charge anything to reset a bit to 0

◼We just pay for the reset with the $1 on it.

29CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Accounting Method Example: Binary Counter Increment

Binary

Counter

Amortized

Cost .

Real

Cost Notes .

$1 credit stored for bit 0
0 0 0 0 0

$2 $1

0 0 0 0 1
$1

$1 credit used for bit 0

$1 credit stored for bit 1$0+$2 $1 + $1

0 0 0 1 0
$1

$1 credit stored for bit 0$2 $1$1
0 0 0 1 1

$1

0 0 1 0 0
$1

$1 credit used for bit 0

$1 credit used for bit 1

$1 credit stored for bit 2

$0+$0+$2 $1+$1+$1

30CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

 The amortized cost of setting bits to 0
in the first while loop:

$0

(the real cost is paid by the credits)

 The amortized cost of setting a single
bit to 1 at the end:

$2

($1 is stored as credit for the bit)

 Total amortized cost for an
INCREMENT operation?

$2

Accounting Method Example: Binary Counter Increment

INCREMENT(A, k)

i 0
while i k and A[i] = 1 do

A[i] 0
i i +1

if i k then

A[i] 1

return

31CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

 For any sequence of n INCREMENT operations

starting from counter value 0:

 The credit never goes negative

We have $1 stored as credit for each bit-1.

We can use the stored credit to flip each bit to 0.

 So, we have:

Accounting Method Example: Binary Counter Increment

ai
i=1

n

å ³ ci
i=1

n

å ai: amortized cost of operation i

ci: real cost of operation i

In other words, the sum of amortized costs for n operations is

an upper bound for the sum of real costs.

32CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

 So, we have showed that:

For n increment operations:

the total amortized cost is O(n).

This amortized cost is an upper bound for the actual cost

Accounting Method Example: Binary Counter Increment

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

33

The Potential Method

Accounting method represents prepaid work as credit stored

with specific objects in the data structure

Potential method represents the prepaid work as

potential energy or just potential

that can be released to pay for the future operations

The potential is associated with the data structure as a whole

rather than with specific objects within the data structure

34CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method

We start with an initial data structure D0 and perform n operations.

For 1 ≤ i ≤ n, let:

Ci: the actual cost of the ith operation

Di: data structure that results after applying ith operation to Di-1

ϕ: potential function that maps each data structure Di to a real

number ϕ(Di)

ϕ(Di): the potential associated with data structure Di

Ĉi: amortized cost of the ith operation w.r.t. function ϕ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

35

The Potential Method

actual increase in potential
cost due to the operation

The total amortized cost of n operations is

)()(ˆ
1−−+= iiii DDCC

=

−

= =

−+=

−+=

n

i

ni

i

n

i

n

i

iii

DDC

DDCC

1

0

1

1 1

)()(

))()((ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

36

The Potential Method

If we can ensure that (Dn) (D0) then

the total amortized cost is an upper bound on the

total actual cost

However, (Dn) (D0) should hold for all possible n

since, in practice, we do not always know n in advance

Hence, if we require that (Di) (D0), for all i, then we ensure

that the total amortized cost is an upper bound for the total cost

=

n

i

iC
1

ˆ

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

37

The Potential Method:

Stack Operations

• Define (S)=| S |, the number of objects in the stack

• For the initially empty stack, we have (D0) = 0

• Since |S| 0, stack Di that results after ith operation

has nonnegative potential for all i, that is

(Di) 0 = (D0) for all i

• Hence, the total amortized cost is an upper bound on the total

actual cost

38CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

0

Potential .

PUSH(10)

1

10

39

PUSH(39)

1

1 2

2 2

1 3 2

39CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

0

Potential .

PUSH(10)

1

10

39

PUSH(39)

1

1 2

2 2

1 3 2

POP() 1 2 0

40CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

0

Potential .

PUSH(10)

1

10

17

PUSH(39)

1

1 2

2 2

1 3 2

POP() 1 2 0

PUSH(17) 1 3 2

PUSH(23) 1 4 2

23

41CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

0

Potential .

PUSH(10)

1

10

17

PUSH(39)

1

1 2

2 2

1 3 2

POP() 1 2 0

PUSH(17) 1 3 2

PUSH(23) 1 4 2

23

MULTIPOP(3) 3 1 0

42CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

STACK

47

PUSH(47)

Operation

Amortized

Cost .

Real

Cost

0

Potential .

PUSH(10)

1

PUSH(39)

1

1 2

2 2

1 3 2

POP() 1 2 0

PUSH(17) 1 3 2

PUSH(23) 1 4 2

MULTIPOP(3) 3 1 0

sum of amortized costs ≥ sum of real costs

43CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

Reminder: ϕ(Di): The number of objects in stack after operation i

PUSH(S, x):

ϕ(Di) – ϕ(Di-1) = 1 (because the stack size increases by 1)

Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = 1 + 1 = 2

Amortized cost of PUSH operation is 2

POP(S):

ϕ(Di) – ϕ(Di-1) = -1 (because the stack size decreases by 1)

Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = 1 - 1 = 0

Amortized cost of POP operation is 0

44CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Stack Operations

Reminder: ϕ(Di): The number of objects in stack after operation i

MULTIPOP(S, k):

ϕ(Di) – ϕ(Di-1) = -kʹ, where kʹ = min{|S|, k}

because the stack size decreases by kʹ

Ĉi = Ci + ϕ(Di) – ϕ(Di-1) = kʹ - kʹ = 0

Amortized cost of MULTIPOP operation is 0

The amortized cost of each operation is O(1).

Thus, the amortized cost of a sequence of n operations is O(n)

45CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method - Intuition

If ϕ(Di) – ϕ(Di-1) > 0, then:

Amortized cost Ĉi is an overcharge for the ith operation.

The potential of the data structure increases.

If ϕ(Di) – ϕ(Di-1) < 0, then:

Amortized cost Ĉi is an undercharge for the ith operation.

The actual cost of the operation is paid by the

decrease in potential.

46CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method - Intuition

Different potential functions may yield different amortized costs.

The best potential function to use depends on the desired time bounds.

Choose a potential function such that ϕ(Di) – ϕ(D0) ≥ 0 for all i
values. This ensures that the amortized cost of any i operations is an
upper bound for the actual cost.

Practical guideline:

Choose a potential function that increases a little after every
cheap operation, and decreases a lot after an expensive operation.

47CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 Define ϕ(Di) = bi

where bi: number of 1s in the counter after the ith operation

 The actual cost of INCREMENT operation:

Ci = (# bits changed 0⟹1) + (# of bits changed 1⟹0)

 The potential change after the ith INCREMENT operation:

ϕ(Di) – ϕ(Di-1) = (# of bits changed 0⟹1) − (# of bits changed 1⟹0)

 Amortized cost of the ith INCREMENT operation:

Ĉi = Ci + ϕ(Di) – ϕ(Di-1)

= 2 . (# of bits changed from 0 ⟹ 1)

48CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 Amortized cost of the ith INCREMENT operation:

Ĉi = 2 . (# of bits changed from 0 ⟹ 1)

 In one INCREMENT operation, we change at most 1 bit 0 ⟹ 1

 Hence, the amortized cost of an INCREMENT operation:

Ĉi ≤ 2

49CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

Binary

Counter

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

Amortized

Cost .

Real

Cost Potential .

0

1 1 2

2 1 2

1 2 2

3 1 2

CS473 – Lecture 12 Cevdet Aykanat - Bilkent University

Computer Engineering Department

50

The Potential Method:

Incrementing a Binary Counter

• If the counter starts at zero, then (D0) = 0, the

number of 1s in the counter after the ith operation

• Since (Di) 0 for all i the total amortized cost is an

upper bound on the total actual cost

• Hence, the worst-case cost of n operations is O(n)

51CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 What if the counter does not start from zero (i.e. b0 ≠ 0)?

 For a sequence of n INCREMENT operations, can we say that
the sum of the amortized costs is an upper bound for the sum
of the actual costs?

No, because:

and ϕ(D0) = b0 ≠ 0.

So, ϕ(Dn) - ϕ(D0) is not necessarily ≥ 0

Reminder: ϕ(Di) = bi

where bi: number of 1s in the counter after the i th operation

Ĉi =

i=1

n

å Ci +f(Dn)-f(D0)

i=1

n

å

52CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

The Potential Method for Binary Counter Increment

 What if the counter does not start from zero (i.e. b0 ≠ 0)?

 For a sequence of n INCREMENT operations we can write:

Ci =

i=1

n

å Ĉi -f(Dn)+f(D0)

i=1

n

å

≤ 2n − bn + b0 (because Ĉi ≤ 2 for all i)

Note: b0 ≤ k, where k is the number of bits of the counter.

If we execute at least n = Ω(k) INCREMENT operations, the total

actual cost will be O(n), no matter what the initial counter value is.

53CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Amortized Analysis - Summary

 With amortized analysis, we show that the average cost of an

operation is small if we average over a sequence of operations

(even though some single operations may be expensive).

 We studied 3 techniques for amortized analysis:

 Aggregate Method

 Accounting Method

 Potential Method

54CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Amortized Analysis - Summary

 Aggregate Method:

 Directly compute the sum of n operations.

 Then, compute the average.

 Accounting Method:

 Pay a little extra for the cheap operations and

store the difference as credit on certain items

 Pay for the expensive operations using the stored credit.

 As long as we never run of out of credits:

◼ The total amortized cost is guaranteed to be an upper
bound for the total actual cost.

55CS 473 – Lecture 12 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Amortized Analysis - Summary

 Potential Method:
 Similar to the accounting method, but a potential function is

defined for the whole data structure instead of individual items.

 The potential is 0 initially.

 It increases slowly with every cheap operation.

 Expensive operations are paid using the potential stored.

 Amortized cost is the actual cost plus the change in potential.

 As long as potential is always nonnegative:

The total amortized cost is guaranteed to be an upper bound for
the total actual cost.

