Home
 Schedule
 

Schedule

Week of Subject Homework assignments
1 Feb 11 Overview, how to design a learning system  
2 Feb 18 Bayesian decision theory  
3 Feb 25 Bayesian decision theory  
4 Mar 3 Parametric methods: density estimation, regression  
5 Mar 10 Parametric methods: density estimation, regression HW1 out (Mar 12)
6 Mar 17 Nonparametric methods: density estimation  
7 Mar 24 Decision trees HW1 in (Mar 24)
8 Mar 31 Midterm HW2 out (Mar 31)
9 Apr 7 Linear discrimination  
10 Apr 14 Multilayer perceptrons HW2 in (Apr 14)
11 Apr 21 Multilayer perceptrons HW3 out (Apr 21)
No class (Apr 23)
12 Apr 28 Unsupervised learning and clustering  
13 May 5 Hidden Markov models HW3 in (May 5)
HW4 out (May 7)
14 May 12 Reinforcement learning  
      HW4 in (May 20)